Dynamic graphics of parametrically linked multivariate methods used in compositional data analysis
dc.contributor.author
dc.contributor.editor
dc.date.accessioned
2008-05-15T09:46:37Z
dc.date.available
2008-05-15T09:46:37Z
dc.date.issued
2008-05-30
dc.identifier.citation
Greenacre, M.J. 'Dynamic graphics of parametrically linked multivariate methods used in compositional data analysis' a CODAWORK’08. Girona: La Universitat, 2008 [consulta: 15 maig 2008]. Necessita Adobe Acrobat. Disponible a Internet a: http://hdl.handle.net/10256/747
dc.identifier.uri
dc.description.abstract
Many multivariate methods that are apparently distinct can be linked by introducing one
or more parameters in their definition. Methods that can be linked in this way are
correspondence analysis, unweighted or weighted logratio analysis (the latter also
known as "spectral mapping"), nonsymmetric correspondence analysis, principal
component analysis (with and without logarithmic transformation of the data) and
multidimensional scaling. In this presentation I will show how several of these
methods, which are frequently used in compositional data analysis, may be linked
through parametrizations such as power transformations, linear transformations and
convex linear combinations. Since the methods of interest here all lead to visual maps
of data, a "movie" can be made where where the linking parameter is allowed to vary in
small steps: the results are recalculated "frame by frame" and one can see the smooth
change from one method to another. Several of these "movies" will be shown, giving a
deeper insight into the similarities and differences between these methods
dc.description.sponsorship
Geologische Vereinigung; Institut d’Estadística de Catalunya; International Association for Mathematical Geology; Càtedra Lluís Santaló d’Aplicacions de la Matemàtica; Generalitat de Catalunya, Departament d’Innovació, Universitats i Recerca; Ministerio de Educación y Ciencia; Ingenio 2010.
dc.format.mimetype
application/pdf
dc.language.iso
eng
dc.publisher
Universitat de Girona. Departament d’Informàtica i Matemàtica Aplicada
dc.rights
Tots els drets reservats
dc.subject
dc.title
Dynamic graphics of parametrically linked multivariate methods used in compositional data analysis
dc.type
info:eu-repo/semantics/conferenceObject
dc.rights.accessRights
info:eu-repo/semantics/openAccess