Comparing methods for dimensionality reduction when data are density functions
dc.contributor.author
dc.contributor.editor
dc.date.accessioned
2008-05-15T09:41:25Z
dc.date.available
2008-05-15T09:41:25Z
dc.date.issued
2008-05-30
dc.identifier.citation
Delicado, P. 'Comparing methods for dimensionality reduction when data are density functions' a CODAWORK’08. Girona: La Universitat, 2008 [consulta: 15 maig 2008]. Necessita Adobe Acrobat. Disponible a Internet a: http://hdl.handle.net/10256/746
dc.identifier.uri
dc.description.abstract
Functional Data Analysis (FDA) deals with samples where a whole function is observed
for each individual. A particular case of FDA is when the observed functions are density
functions, that are also an example of infinite dimensional compositional data. In this
work we compare several methods for dimensionality reduction for this particular type
of data: functional principal components analysis (PCA) with or without a previous
data transformation and multidimensional scaling (MDS) for diferent inter-densities
distances, one of them taking into account the compositional nature of density functions. The difeerent methods are applied to both artificial and real data (households
income distributions)
dc.description.sponsorship
Geologische Vereinigung; Institut d’Estadística de Catalunya; International Association for Mathematical Geology; Càtedra Lluís Santaló d’Aplicacions de la Matemàtica; Generalitat de Catalunya, Departament d’Innovació, Universitats i Recerca; Ministerio de Educación y Ciencia; Ingenio 2010.
dc.format.mimetype
application/pdf
dc.language.iso
eng
dc.publisher
Universitat de Girona. Departament d’Informàtica i Matemàtica Aplicada
dc.rights
Tots els drets reservats
dc.subject
dc.title
Comparing methods for dimensionality reduction when data are density functions
dc.type
info:eu-repo/semantics/conferenceObject
dc.rights.accessRights
info:eu-repo/semantics/openAccess