Mixing compositions and other scales
dc.contributor.author
dc.contributor.editor
dc.date.accessioned
2008-05-14T10:13:09Z
dc.date.available
2008-05-14T10:13:09Z
dc.date.issued
2008-05-30
dc.identifier.citation
Boogaart, K.G.; Tolosana Delgado, R. 'Mixing compositions and other scales' a CODAWORK’08. Girona: La Universitat, 2008 [consulta: 14 maig 2008]. Necessita Adobe Acrobat. Disponible a Internet a: http://hdl.handle.net/10256/743
dc.identifier.uri
dc.description.abstract
Theory of compositional data analysis is often focused on the composition only. However in practical applications we often treat a composition together with covariables
with some other scale. This contribution systematically gathers and develop statistical tools for this situation. For instance, for the graphical display of the dependence
of a composition with a categorical variable, a colored set of ternary diagrams might
be a good idea for a first look at the data, but it will fast hide important aspects if
the composition has many parts, or it takes extreme values. On the other hand colored scatterplots of ilr components could not be very instructive for the analyst, if the
conventional, black-box ilr is used.
Thinking on terms of the Euclidean structure of the simplex, we suggest to set up
appropriate projections, which on one side show the compositional geometry and on the
other side are still comprehensible by a non-expert analyst, readable for all locations and
scales of the data. This is e.g. done by defining special balance displays with carefully-
selected axes. Following this idea, we need to systematically ask how to display, explore,
describe, and test the relation to complementary or explanatory data of categorical, real,
ratio or again compositional scales.
This contribution shows that it is sufficient to use some basic concepts and very few
advanced tools from multivariate statistics (principal covariances, multivariate linear
models, trellis or parallel plots, etc.) to build appropriate procedures for all these combinations of scales. This has some fundamental implications in their software implementation, and how might they be taught to analysts not already experts in multivariate
analysis
dc.description.sponsorship
Geologische Vereinigung; Institut d’Estadística de Catalunya; International Association for Mathematical Geology; Càtedra Lluís Santaló d’Aplicacions de la Matemàtica; Generalitat de Catalunya, Departament d’Innovació, Universitats i Recerca; Ministerio de Educación y Ciencia; Ingenio 2010.
dc.format.mimetype
application/pdf
dc.language.iso
eng
dc.publisher
Universitat de Girona. Departament d’Informàtica i Matemàtica Aplicada
dc.rights
Tots els drets reservats
dc.subject
dc.title
Mixing compositions and other scales
dc.type
info:eu-repo/semantics/conferenceObject
dc.rights.accessRights
info:eu-repo/semantics/openAccess