Using self organizing maps on compositional data
dc.contributor.author
dc.contributor.editor
dc.date.accessioned
2008-05-14T10:09:18Z
dc.date.available
2008-05-14T10:09:18Z
dc.date.issued
2008-05-28
dc.identifier.citation
Cortés, J.A.; Palma, J.L. 'Using self organizing maps on compositional data' a CODAWORK’08. Girona: La Universitat, 2008 [consulta: 16 maig 2008]. Necessita Adobe Acrobat. Disponible a Internet a:
dc.identifier.uri
dc.description.abstract
Self-organizing maps (Kohonen 1997) is a type of artificial neural network developed
to explore patterns in high-dimensional multivariate data. The conventional version
of the algorithm involves the use of Euclidean metric in the process of adaptation of
the model vectors, thus rendering in theory a whole methodology incompatible with
non-Euclidean geometries.
In this contribution we explore the two main aspects of the problem:
1. Whether the conventional approach using Euclidean metric can shed valid results
with compositional data.
2. If a modification of the conventional approach replacing vectorial sum and scalar
multiplication by the canonical operators in the simplex (i.e. perturbation and
powering) can converge to an adequate solution.
Preliminary tests showed that both methodologies can be used on compositional data.
However, the modified version of the algorithm performs poorer than the conventional
version, in particular, when the data is pathological. Moreover, the conventional ap-
proach converges faster to a solution, when data is \well-behaved".
Key words: Self Organizing Map; Artificial Neural networks; Compositional data
dc.description.sponsorship
Geologische Vereinigung; Institut d’Estadística de Catalunya; International Association for Mathematical Geology; Càtedra Lluís Santaló d’Aplicacions de la Matemàtica; Generalitat de Catalunya, Departament d’Innovació, Universitats i Recerca; Ministerio de Educación y Ciencia; Ingenio 2010.
dc.format.mimetype
application/pdf
dc.language.iso
eng
dc.publisher
Universitat de Girona. Departament d’Informàtica i Matemàtica Aplicada
dc.rights
Tots els drets reservats
dc.title
Using self organizing maps on compositional data
dc.type
info:eu-repo/semantics/conferenceObject
dc.rights.accessRights
info:eu-repo/semantics/openAccess