A new distribution on the simplex containing the Dirichlet family
dc.contributor.author
dc.contributor.editor
dc.date.accessioned
2008-05-13T08:15:11Z
dc.date.available
2008-05-13T08:15:11Z
dc.date.issued
2008-05-29
dc.identifier.citation
Ongaro, A.; Migliorati, S.; Monti, G.S. 'A new distribution on the simplex containing the Dirichlet family' a CODAWORK’08. Girona: La Universitat, 2008 [consulta: 13 maig 2008]. Necessita Adobe Acrobat. Disponible a Internet a: http://hdl.handle.net/10256/726
dc.identifier.uri
dc.description.abstract
The Dirichlet family owes its privileged status within simplex distributions to easyness
of interpretation and good mathematical properties. In particular, we recall fundamental
properties for the analysis of compositional data such as closure under amalgamation
and subcomposition. From a probabilistic point of view, it is characterised (uniquely)
by a variety of independence relationships which makes it indisputably the reference
model for expressing the non trivial idea of substantial independence for compositions.
Indeed, its well known inadequacy as a general model for compositional data stems
from such an independence structure together with the poorness of its parametrisation.
In this paper a new class of distributions (called Flexible Dirichlet) capable of handling
various dependence structures and containing the Dirichlet as a special case is presented.
The new model exhibits a considerably richer parametrisation which, for example,
allows to model the means and (part of) the variance-covariance matrix separately.
Moreover, such a model preserves some good mathematical properties of the Dirichlet,
i.e. closure under amalgamation and subcomposition with new parameters simply
related to the parent composition parameters. Furthermore, the joint and conditional
distributions of subcompositions and relative totals can be expressed as simple mixtures
of two Flexible Dirichlet distributions.
The basis generating the Flexible Dirichlet, though keeping compositional invariance,
shows a dependence structure which allows various forms of partitional dependence
to be contemplated by the model (e.g. non-neutrality, subcompositional dependence
and subcompositional non-invariance), independence cases being identified by suitable
parameter configurations. In particular, within this model substantial independence
among subsets of components of the composition naturally occurs when the subsets
have a Dirichlet distribution
dc.description.sponsorship
Geologische Vereinigung; Institut d’Estadística de Catalunya; International Association for Mathematical Geology; Càtedra Lluís Santaló d’Aplicacions de la Matemàtica; Generalitat de Catalunya, Departament d’Innovació, Universitats i Recerca; Ministerio de Educación y Ciencia; Ingenio 2010.
dc.format.mimetype
application/pdf
dc.language.iso
eng
dc.publisher
Universitat de Girona. Departament d’Informàtica i Matemàtica Aplicada
dc.rights
Tots els drets reservats
dc.subject
dc.title
A new distribution on the simplex containing the Dirichlet family
dc.type
info:eu-repo/semantics/conferenceObject
dc.rights.accessRights
info:eu-repo/semantics/openAccess