Compositional analysis of bivariate discrete probabilities
dc.contributor.author
dc.contributor.editor
dc.date.accessioned
2008-05-12T11:18:06Z
dc.date.available
2008-05-12T11:18:06Z
dc.date.issued
2008-05-28
dc.identifier.citation
Egozcue, J.J.; Díaz Barrero, J.L.; Pawlowsky Glahn, V. 'Compositional analysis of bivariate discrete probabilities' a CODAWORK’08. Girona: La Universitat, 2008 [consulta: 12 maig 2008]. Necessita Adobe Acrobat. Disponible a Internet a: http://hdl.handle.net/10256/717
dc.identifier.uri
dc.description.abstract
A joint distribution of two discrete random variables with finite support can be displayed as a two way table of probabilities adding to one. Assume that this table has
n rows and m columns and all probabilities are non-null. This kind of table can be
seen as an element in the simplex of n · m parts. In this context, the marginals are
identified as compositional amalgams, conditionals (rows or columns) as subcompositions. Also, simplicial perturbation appears as Bayes theorem. However, the Euclidean
elements of the Aitchison geometry of the simplex can also be translated into the table
of probabilities: subspaces, orthogonal projections, distances.
Two important questions are addressed: a) given a table of probabilities, which is
the nearest independent table to the initial one? b) which is the largest orthogonal
projection of a row onto a column? or, equivalently, which is the information in a
row explained by a column, thus explaining the interaction? To answer these questions
three orthogonal decompositions are presented: (1) by columns and a row-wise geometric marginal, (2) by rows and a columnwise geometric marginal, (3) by independent
two-way tables and fully dependent tables representing row-column interaction. An
important result is that the nearest independent table is the product of the two (row
and column)-wise geometric marginal tables. A corollary is that, in an independent
table, the geometric marginals conform with the traditional (arithmetic) marginals.
These decompositions can be compared with standard log-linear models.
Key words: balance, compositional data, simplex, Aitchison geometry, composition,
orthonormal basis, arithmetic and geometric marginals, amalgam, dependence measure,
contingency table
dc.description.sponsorship
Geologische Vereinigung; Institut d’Estadística de Catalunya; International Association for Mathematical Geology; Càtedra Lluís Santaló d’Aplicacions de la Matemàtica; Generalitat de Catalunya, Departament d’Innovació, Universitats i Recerca; Ministerio de Educación y Ciencia; Ingenio 2010.
dc.format.mimetype
application/pdf
dc.language.iso
eng
dc.publisher
Universitat de Girona. Departament d’Informàtica i Matemàtica Aplicada
dc.rights
Tots els drets reservats
dc.subject
dc.title
Compositional analysis of bivariate discrete probabilities
dc.type
info:eu-repo/semantics/conferenceObject
dc.rights.accessRights
info:eu-repo/semantics/openAccess