The Frozen Cage Model: A Computationally Low-Cost Tool for Predicting the Exohedral Regioselectivity of Cycloaddition Reactions Involving Endohedral Metallofullerenes

Text Complet
Frozen-Cage-Model.pdf closed access
Sol·licita còpia a l'autor de l'article
En omplir aquest formulari esteu demanant una còpia de l'article dipositat al repositori institucional (DUGiDocs) al seu autor o a l'autor principal de l'article. Serà el mateix autor qui decideixi lliurar una còpia del document a qui ho sol•liciti si ho creu convenient. En tot cas, la Biblioteca de la UdG no intervé en aquest procés ja que no està autoritzada a facilitar articles quan aquests són d'accés restringit.
Compartir
Functionalization of endohedral metallofullerenes (EMFs) is an active line of research that is important for obtaining nanomaterials with unique properties that might be used in a variety of fields, ranging from molecular electronics to biomedical applications. Such functionalization is commonly achieved by means of cycloaddition reactions. The scarcity of both experimental and theoretical studies analyzing the exohedral regioselectivity of cycloaddition reactions involving EMFs translates into a poor understanding of the EMF reactivity. From a theoretical point of view, the main obstacle is the high computational cost associated with this kind of studies. To alleviate the situation, we propose an approach named the frozen cage model (FCM) based on single point energy calculations at the optimized geometries of the empty cage products. The FCM represents a fast and computationally inexpensive way to perform accurate qualitative predictions of the exohedral regioselectivity of cycloaddition reactions in EMFs. Analysis of the Dimroth approximation, the activation strain or distortion/interaction model, and the noncluster energies in the Diels–Alder cycloaddition of s-cis-1,3-butadiene to X@D3h-C78 (X = Ti2C2, Sc3N, and Y3N) EMFs provides a justification of the method ​
​Tots els drets reservats