Simplification, approximation and deformation of large models

Text Complet
Compartir
The high level of realism and interaction in many computer graphic applications requires techniques for processing complex geometric models. First, we present a method that provides an accurate low-resolution approximation from a multi-chart textured model that guarantees geometric fidelity and correct preservation of the appearance attributes. Then, we introduce a mesh structure called Compact Model that approximates dense triangular meshes while preserving sharp features, allowing adaptive reconstructions and supporting textured models. Next, we design a new space deformation technique called *Cages based on a multi-level system of cages that preserves the smoothness of the mesh between neighbouring cages and is extremely versatile, allowing the use of heterogeneous sets of coordinates and different levels of deformation. Finally, we propose a hybrid method that allows to apply any deformation technique on large models obtaining high quality results with a reduced memory footprint and a high performance. ​
​ADVERTIMENT. L'accés als continguts d'aquesta tesi doctoral i la seva utilització ha de respectar els drets de la persona autora. Pot ser utilitzada per a consulta o estudi personal, així com en activitats o materials d'investigació i docència en els termes establerts a l'art. 32 del Text Refós de la Llei de Propietat Intel·lectual (RDL 1/1996). Per altres utilitzacions es requereix l'autorització prèvia i expressa de la persona autora. En qualsevol cas, en la utilització dels seus continguts caldrà indicar de forma clara el nom i cognoms de la persona autora i el títol de la tesi doctoral. No s'autoritza la seva reproducció o altres formes d'explotació efectuades amb finalitats de lucre ni la seva comunicació pública des d'un lloc aliè al servei TDX. Tampoc s'autoritza la presentació del seu contingut en una finestra o marc aliè a TDX (framing). Aquesta reserva de drets afecta tant als continguts de la tesi com als seus resums i índexs.