Generalized Higher-Order Voronoi Diagrams on Polyhedral Surfaces
dc.contributor.author
dc.date.accessioned
2010-09-29T10:50:32Z
dc.date.available
2010-08-10T09:04:51Z
2010-09-29T10:50:32Z
dc.date.issued
2007
dc.identifier.citation
Fort, M., i Sellares, J.A. (2007). Generalized Higher-Order Voronoi Diagrams on Polyhedral Surfaces. 4th International Symposium on Voronoi Diagrams in Science and Engineering : 2007 : ISVD '07, 74 - 83. Recuperat 29 setembre 2010, a http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=4276107
dc.identifier.isbn
0-7695-2869-4
dc.identifier.uri
dc.description.abstract
We present an algorithm for computing exact shortest paths, and consequently distances, from a generalized source (point, segment, polygonal chain or polygonal region) on a possibly non-convex polyhedral surface in which polygonal chain or polygon obstacles are allowed. We also present algorithms for computing discrete Voronoi diagrams of a set of generalized sites (points, segments, polygonal chains or polygons) on a polyhedral surface with obstacles. To obtain the discrete Voronoi diagrams our algorithms, exploiting hardware graphics capabilities, compute shortest path distances defined by the sites
dc.format.mimetype
application/pdf
dc.language.iso
eng
dc.publisher
IEEE
dc.relation.isformatof
Reproducció digital del document publicat a: http://dx.doi.org/10.1109/ISVD.2007.24
dc.relation.ispartof
© 4th International Symposium on Voronoi Diagrams in Science and Engineering : 2007 : ISVD '07, 2007, p. 74-83
dc.relation.ispartofseries
Articles publicats (D-IMA)
dc.rights
Tots els drets reservats
dc.subject
dc.title
Generalized Higher-Order Voronoi Diagrams on Polyhedral Surfaces
dc.type
info:eu-repo/semantics/article
dc.rights.accessRights
info:eu-repo/semantics/openAccess
dc.identifier.doi