An octree isosurface codification based on discrete planes
Texto Completo
Compartir
Describes a method to code a decimated model of an isosurface on an octree representation while maintaining volume data if it is needed. The proposed technique is based on grouping the marching cubes (MC) patterns into five configurations according the topology and the number of planes of the surface that are contained in a cell. Moreover, the discrete number of planes on which the surface lays is fixed. Starting from a complete volume octree, with the isosurface codified at terminal nodes according to the new configuration, a bottom-up strategy is taken for merging cells. Such a strategy allows one to implicitly represent co-planar faces in the upper octree levels without introducing any error. At the end of this merging process, when it is required, a reconstruction strategy is applied to generate the surface contained in the octree intersected leaves. Some examples with medical data demonstrate that a reduction of up to 50% in the number of polygons can be achieved
Tots els drets reservats