Systematic Investigation of the Role of the Epoxides as Substrates for CO2 Capture in the Cycloaddition Reaction Catalyzed by Ascorbic Acid
dc.contributor.author
dc.date.accessioned
2025-07-30T08:35:52Z
dc.date.available
2025-07-30T08:35:52Z
dc.date.issued
2025-07-25
dc.identifier.issn
2755-2608
dc.identifier.uri
dc.description.abstract
This work establishes a comprehensive theoretical framework for synthesizing cyclic organic carbonates through the cycloaddition of carbon dioxide (CO2) to epoxides under mild pressure and temperature conditions. Using advanced computational techniques, the study examines the thermodynamic and kinetic aspects of the reaction, with a particular focus on epoxide substrates featuring diverse substituents. Detailed analysis reveals activation energy barriers and identifies the rate-determining step, offering crucial insights into the molecular processes governing the reaction. The investigation highlights the significant role of steric and electronic effects in influencing substrate reactivity. Monosubstituted epoxides display stronger steric correlations, while bulkier and disubstituted substrates deviate due to the interplay of steric hindrance and electronic factors such as electrophilicity and chemical hardness. Additionally, localized steric effects and substituent electronegativity emerge as key contributors to transition state stability, with halogenated substrates showcasing nuanced reactivity profiles. Despite these advancements, machine learning models applied in this study demonstrate poor predictive performance, underscoring the challenge of capturing the complex interplay of substrate properties using current descriptors. This highlights the limitations of substrate-based approaches in predicting reaction outcomes. These findings emphasize that catalytic design plays a more decisive role than substrate modification in determining reaction efficiency. This work calls for a systematic exploration of ascorbic acid-based catalyst modifications to optimize energy barriers and improve overall reaction performance, paving the way for rational catalyst design and predictive catalysis in CO₂ valorization
dc.description.sponsorship
We thank the Spanish Ministerio de Ciencia, Innovación y Universidades (MCIN/AEI/https://doi.org/10.13039/501100011033/FEDER, UE) for projects PID2021-127423NB-I00 (to A. P.), PID2022-140159NA-I00 (to J. V. A.-R.), PID2023-147424NB-I00 (to M. S.), and RED2022-134939-T (to M. S.), andthe Generalitat de Catalunya for project 2021SGR623, predoctoral FISDUR 2023 grant to T. O.-G. and ICREA Academia Prizes to A. P. (2019) and M. S. (2024). A. P. is a Serra Húnter Fellow. S. P.-P. acknowledges co-funding from the European Union's Horizon 2020 research and innovation Maria Skłodowska-Curie Actions, under grant agreement number 945380. D. D. and J. V. A.-R. acknowledge Gobierno de AragónFondo Social Europeo (Research Group E07_23R). We acknowledge Angie Sacoto for helpful initial testing calculations. V. D. E. thanks the National Research Council of Thailand, grant no. N42A650196, for research support. European Union's Recovery and Resilience Facility-Next Generation (MMT24-ISQCH-01) in the framework of the General Invitation of the Spanish Government's public business entity Red.es to participate in talent attraction and retention programmes within Investment 4 of Component 19 of the Recovery, Transformation and Resilience Plan (MOMENTUM)
dc.format.extent
12 p.
dc.format.mimetype
application/pdf
dc.language.iso
eng
dc.publisher
Royal Society of Chemistry
dc.relation
PID2021-127423NB-I00
PID2023-147424NB-I00
dc.relation.isformatof
Reproducció digital del document publicat a: https://doi.org/10.1039/D5IM00037H
dc.relation.ispartof
Industrial Chemistry & Materials, 2025, vol. 3, p. 452-463
dc.relation.ispartofseries
Articles publicats (D-Q)
dc.rights
Reconeixement 4.0 Internacional
dc.rights.uri
dc.source
Ortiz García, Thalía Posada-Pérez, Sergio El-Khchi, Layla Dalmau Ginesta, David Alegre-Requena, Juan V. Solà i Puig, Miquel D'Elia, Valerio Poater Teixidor, Albert 2025 Systematic Investigation of the Role of the Epoxides as Substrates for CO2 Capture in the Cycloaddition Reaction Catalyzed by Ascorbic Acid Industrial Chemistry & Materials 3 452 463
dc.subject
dc.title
Systematic Investigation of the Role of the Epoxides as Substrates for CO2 Capture in the Cycloaddition Reaction Catalyzed by Ascorbic Acid
dc.type
info:eu-repo/semantics/article
dc.rights.accessRights
info:eu-repo/semantics/openAccess
dc.relation.projectID
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2021-2023/PID2021-127423NB-I00/ES/CATALISIS PREDICTIVA PARA CAMBIAR EL ODEN SECUENCIAL ENTRE EXPERIMENTOS I CALCULOS/
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2021-2023/PID2023-147424NB-I00/ES/DISEÑO COMPUTACIONAL DE COMPUESTOS ORGANICOS PI-CONJUGADOS PARA APLICACIONES FOTOVOLTAICAS Y OPTOELECTRONICAS/
dc.type.version
info:eu-repo/semantics/publishedVersion
dc.identifier.doi
dc.identifier.idgrec
040774
dc.type.peerreviewed
peer-reviewed
dc.relation.FundingProgramme
dc.relation.ProjectAcronym
dc.identifier.eissn
2755-2500
dc.description.ods
9. Indústria, innovació i infraestructures