Integrated strategies for improved bioresorbable stents with silk: characterization, fabrication, and composite integration
Text Complet
embargat.txt
Sol·licita còpia a l'autor de l'article
En omplir aquest formulari esteu demanant una còpia de l'article dipositat al repositori institucional (DUGiDocs) al seu autor o a l'autor principal de l'article. Serà el mateix autor qui decideixi lliurar una còpia del document a qui ho sol•liciti si ho creu convenient. En tot cas, la Biblioteca de la UdG no intervé en aquest procés ja que no està autoritzada a facilitar articles quan aquests són d'accés restringit.
Compartir
ENG- This doctoral thesis explores the creation of next-generation bioresorbable stents (BRS) using an advanced manufacturing technology known as Direct Ink Writing (DIW). This technique enables the printing of a wide variety of biomaterials in the form of pastes or inks, offering high versatility and significant potential for developing medical devices for healthcare and tissue engineering.
The research begins with an analysis of current trends in additive manufacturing and a review of DIW technologies, highlighting the challenges that traditional BRS still face. In this context, the study investigates the use of innovative materials like silk fibroin (SF), a protein derived from the silk of the Bombyx mori silkworm. SF offers high mechanical properties and biocompatibility, being a natural polymer. The thesis delves into creating SF inks suitable for DIW, showing a way for manufacturing stents with natural materials that improve biocompatibility and can be absorbed by the body over time.
The study also examines the use of other materials, such as polyvinyl alcohol (PVA)-based inks, a polymer known for its flexibility and suitability for hydrogel manufacturing. Some of these hydrogels have already been successfully used in other medical devices, reinforcing the interest in developing a suitable environment for BRS using this material. Therefore, the thesis proposes the fabrication of multi-material stents combining PVA and SF to enhance the mechanical properties and biocompatibility of the device. These polymers work in a complementary manner: PVA provides flexibility and stability, while SF offers mechanical strength and biocompatibility.
Finally, the technique of electrospinning (ES) is incorporated, a method that creates micrometric-diameter polymer fibers. This approach enables the application of a coating to the stent with a drug-releasing layer. This coating facilitates a controlled release of medications, helping reduce the risk of complications after stent implantation. Additionally, the large number of fibers increases the drug's contact surface, improving efficiency compared to traditional methods, where the drug is encapsulated in the stent's core and released gradually as it degrades.
This thesis provides a relevant contribution to the field of medical devices by offering new alternatives for BRS fabrication with innovative and promising techniques, opening new possibilities for treating cardiovascular diseases
ADVERTIMENT. Tots els drets reservats. L'accés als continguts d'aquesta tesi doctoral i la seva utilització ha de respectar els drets de la persona autora. Pot ser utilitzada per a consulta o estudi personal, així com en activitats o materials d'investigació i docència en els termes establerts a l'art. 32 del Text Refós de la Llei de Propietat Intel·lectual (RDL 1/1996). Per altres utilitzacions es requereix l'autorització prèvia i expressa de la persona autora. En qualsevol cas, en la utilització dels seus continguts caldrà indicar de forma clara el nom i cognoms de la persona autora i el títol de la tesi doctoral. No s'autoritza la seva reproducció o altres formes d'explotació efectuades amb finalitats de lucre ni la seva comunicació pública des d'un lloc aliè al servei TDX. Tampoc s'autoritza la presentació del seu contingut en una finestra o marc aliè a TDX (framing). Aquesta reserva de drets afecta tant als continguts de la tesi com als seus resums i índexs.