A validated simulation methodology for determining single lap shear allowable strength in thermoplastic polymer composites
dc.contributor.author
dc.date.accessioned
2024-11-15T07:22:40Z
dc.date.available
2024-11-15T07:22:41Z
dc.date.issued
2025-01-15
dc.identifier.issn
1359-8368
dc.identifier.uri
dc.description
El títol de la versió preprint o submitted és: "A methodology to obtain the single lap shear allowable strength of thermoplastic polymer composites by a validated modelling and simulation approach"
dc.description.abstract
While several modeling approaches exist to simulate the strength of single lap shear configurations, their application to obtaining design allowables for thermoplastic composites remains underexplored. This paper addresses this gap by presenting a novel methodology for the forward propagation of parameter uncertainty using advanced finite element models specifically tailored for thermoplastic carbon fiber composites. The proposed approach goes beyond traditional methods by integrating advanced damage models and a structured validation process, supported by an extensive experimental test campaign.
We demonstrate the feasibility of determining design allowables through simulation by examining the influence of batch size on both the validation process and the prediction of allowable strength. Our findings provide new insights into the propagation of uncertainties in the context of composite material design, showing that it is possible to achieve reliable design allowables through simulation, which can significantly accelerate the development of new components while maintaining high safety standards
dc.description.sponsorship
This work has been partially accomplished within the framework of EU Horizon 2020 Clean Sky 2 Project TREAL (Thermoplastic material allowable generation using a reliability-based virtual modeling platform). This work has received funding from the Clean Sky 2 Joint Undertaking (JU), Spain under grant agreement No. 864723. The JU receives support from the European Union’s Horizon 2020 research and innovation programme and the Clean Sky 2 JU members other than the Union. The project consortium is formed by Amade-Universitat de Girona, Universidade do Porto, MSC e-Xstream, and the topic manager is Airbus Operations, France. This work has been partially funded by the Spanish Government (Ministerio de Ciencia e Innovación), Spain under contract PID2021-127879OB-C21. AT acknowledges the Generalitat de Catalunya for the ICREA Academia prize 2022, Spain
dc.format.mimetype
application/pdf
dc.language.iso
eng
dc.publisher
Elsevier
dc.relation.isformatof
Versió preprint del document publicat a: https://doi.org/10.1016/j.compositesb.2024.111909
dc.relation.ispartof
© Composites. Part B, Engineering, 2025, vol. 289, art.núm.111909
dc.relation.ispartofseries
Articles publicats (D-EMCI)
dc.rights
Tots els drets reservats
dc.source
Ninyerola Gavaldà, Joan Cózar, Ivan R. Guerrero Garcia, José Manuel Abdel Monsef, Said Ahmed Ibrahim Sasikumar, Aravind uron Blasco, Albert 2024 A methodology to obtain the single lap shear allowable strength of thermoplastic polymer composites by a validated modelling and simulation approach Composites. Part B, Engineering 289 art.núm.111909
dc.subject
dc.title
A validated simulation methodology for determining single lap shear allowable strength in thermoplastic polymer composites
dc.type
info:eu-repo/semantics/article
dc.rights.accessRights
info:eu-repo/semantics/openAccess
dc.relation.projectID
info:eu-repo/grantAgreement/EC/H2020/864723EU/Thermoplastic material allowable generation using a reliability-based virtual modeling platform/TREAL
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2021-2023/PID2021-127879OB-C21/ES/CARACTERIZACIÓN A FRACTURA Y MODELIZACIÓN NUMÉRICA DE COMPOSITES BAJO CARGAS DE FATIGA TÉRMICA A TEMPERATURAS CRIOGÉNICAS EXTREMAS/
dc.type.version
info:eu-repo/semantics/submittedVersion
dc.identifier.doi
dc.identifier.idgrec
039283
dc.contributor.funder
dc.relation.FundingProgramme
dc.relation.ProjectAcronym
dc.identifier.eissn
1879-1069