Hydrophenoxylation of alkynes by gold catalysts: a mini review
Full Text
Share
The field of chemistry has significantly evolved, with catalysis playing a crucial role in transforming chemical processes. From Valerius' use of sulfuric acid in the sixteenth century to modern advancements, catalysis has driven innovations across various industries. The introduction of gold as a catalyst marked a pivotal shift, expanding its applications beyond ornamentation to homogeneous catalysis. Gold's unique properties, such as its electrophilic nature and flexibility, have enabled its use in synthesizing complex molecules, including those in nanomedicine and sustainable chemical processes. The development of gold-based complexes, particularly in hydroalkoxylation and hydroamination reactions, showcases their efficiency in forming carbon-oxygen bonds under mild conditions. Recent studies on dual gold catalysis and heterobimetallic complexes further highlight gold's versatility in achieving high turnover rates and selectivity. This evolution underscores the potential of gold catalysis in advancing environmentally sustainable methodologies and enhancing the scope of modern synthetic chemistry. The debate about the nature of monogold and dual-gold catalysis is open