Development of constitutive models for the accurate simulation of advanced polymer-based composites under complex loading states
Text Complet
Compartir
In recent decades, several meso-scale computational models have been developed for predicting the failure evolution and strength of composite materials. Nevertheless, the complex failure mechanisms of composites pose a formidable challenge to the development of models capable of consistently reproducing its mechanical response under different loading case scenarios. Furthermore, the lack of standardised multiaxial tests has hindered consensus on failure envelopes and criteria for composites. In this thesis, a new 3D elastoplastic damage model is then proposed to predict the plastic deformation and the progressive failure of unidirectional laminated composite materials at the meso-scale level.
A new plastic yield function and a new non-associative flow rule are proposed to properly define the evolution of the plastic strains. The transverse plastic Poisson's ratio and the volumetric plastic strains can be then imposed. The proposed model is developed under the continuum damage mechanics and the thermodynamics of irreversible process framework. The damage evolution laws are defined to account for the failure mechanisms on both longitudinal and transverse directions. The plastic yield function and the failure criteria can be adjusted by setting two and six input model parameters (envelope shape coefficients), respectively, to account for the mechanical behaviour of the material being analysed.
Guidelines are provided on how to characterise the input material parameters of the proposed model. In this line, a new methodology to measure the transverse Poisson's ratios in fibre-reinforced polymer composite materials is developed. Transverse tensile and transverse compressive standardised tests are instrumented using digital image correlation equipment to measure the strain field on the through-the-thickness surface of the specimens. A thermoplastic-based composite material is used to describe the proposed methodology. The elastic transverse Poisson's ratio exhibits a different behaviour in tension than in compression, its value being greater in compression than in tension. Assuming no plastic strain in the longitudinal direction, the plastic transverse Poisson's ratio in compression suggests no volumetric plastic strains for small axial plastic strains. However, plastic dilatancy is observed when the amount of compressive plastic axial strain increases
ADVERTIMENT. Tots els drets reservats. L'accés als continguts d'aquesta tesi doctoral i la seva utilització ha de respectar els drets de la persona autora. Pot ser utilitzada per a consulta o estudi personal, així com en activitats o materials d'investigació i docència en els termes establerts a l'art. 32 del Text Refós de la Llei de Propietat Intel·lectual (RDL 1/1996). Per altres utilitzacions es requereix l'autorització prèvia i expressa de la persona autora. En qualsevol cas, en la utilització dels seus continguts caldrà indicar de forma clara el nom i cognoms de la persona autora i el títol de la tesi doctoral. No s'autoritza la seva reproducció o altres formes d'explotació efectuades amb finalitats de lucre ni la seva comunicació pública des d'un lloc aliè al servei TDX. Tampoc s'autoritza la presentació del seu contingut en una finestra o marc aliè a TDX (framing). Aquesta reserva de drets afecta tant als continguts de la tesi com als seus resums i índexs.