A numerical study of the scattering in the He-Cu model with a Morse potential: Parabolic manifolds and exponentially small phenomena
dc.contributor.author
dc.date.accessioned
2024-09-10T06:25:47Z
dc.date.available
2024-09-10T06:25:48Z
dc.date.issued
2024-12-01
dc.identifier.issn
1007-5704
dc.identifier.uri
dc.description.abstract
We consider the classical approximation of a realistic model for the scattering of He atoms from Cu surfaces. For this problem, modeled by a two-degrees-of-freedom Hamiltonian system, the existence of chaos has been proven analytically very recently for sufficiently large values of the energy, if some quantity, known as the Stokes constant, is non-zero (Borondo et al., 2024). Taking two different and independent approaches, this paper provides numerical evidence that this is indeed the case. Both approaches provide the same value of the non-zero Stokes constant
dc.format.mimetype
application/pdf
dc.language.iso
eng
dc.publisher
Elsevier
dc.relation.isformatof
Versió postprint del document publicat a: https://doi.org/10.1016/j.cnsns.2024.108260
dc.relation.ispartof
© Communications in Nonlinear Science and Numerical Simulations, 2024, vol. 139, art.núm. 108260
dc.relation.ispartofseries
Articles publicats (D-IMAE)
dc.rights
Reconeixement-NoComercial-SenseObraDerivada 4.0 Internacional
dc.rights.uri
dc.source
Barrabés Vera, Esther orondo, Florentino Fontich, Ernest Martín, Pau Ollé Torner, Mercè 2024 A numerical study of the scattering in the He-Cu model with a Morse potential: Parabolic manifolds and exponentially small phenomena Communications in Nonlinear Science and Numerical Simulations 139 art.núm. 108260
dc.subject
dc.title
A numerical study of the scattering in the He-Cu model with a Morse potential: Parabolic manifolds and exponentially small phenomena
dc.type
info:eu-repo/semantics/article
dc.rights.accessRights
info:eu-repo/semantics/embargoedAccess
dc.embargo.lift
2026-12-01T00:00:00Z
dc.embargo.terms
2026-12-01T00:00:00Z
dc.date.embargoEndDate
info:eu-repo/date/embargoEnd/2026-12-01
dc.type.version
info:eu-repo/semantics/acceptedVersion
dc.identifier.doi
dc.identifier.idgrec
039077
dc.type.peerreviewed
peer-reviewed
dc.identifier.eissn
1878-7274