On the generation of design allowables of composite coupons accounting for defects using a multi-fidelity approach

Full Text
embargat.txt embargoed access
Request a copy
When filling the form you are requesting a copy of the article, that is deposited in the institutional repository (DUGiDocs), at the autor or main autor of the article. It will be the same author who decides to give a copy of the document to the person who requests it, if it considers it appropriate. In any case, the UdG Library doesn’t take part in this process because it is not authorized to provide restricted articles.
Composite structures play a crucial role in lightweight applications due to their exceptional mechanical performance and low density. However, their anisotropic behavior and susceptibility to uncertainties, such as manufacturing defects, bring challenges during the design process. Traditional approaches involving extensive testing are being replaced by computational simulations for efficiency and cost-effectiveness. These simulations not only replace traditional methods but also yield a multitude of results, accommodating various uncertainties. Design allowables are widely used as design values which account for all the uncertainties associated with composite structures. Obtaining these values requires accurate computational models and a thorough analysis of the composite structure behavior. Moreover, microstructural mechanics aids in understanding both their mechanical behavior and the sources of variability. This thesis addresses the need for accurate virtual calculation of design allowables that account for inherent uncertainties and manufacturing defects in composite structures. Therefore, computational tools that systematically propagate uncertainties and provide statistical parameters representing material behavior are developed. The research contributes to both the accuracy and efficiency of composite structures design, aligning with the industry's shift toward more cost-effective and practical methodologies. To achieve these objectives, the thesis focuses on three main components: statistical modeling for design allowables, computational analysis for mechanical response simulations, and an advanced micromechanical model for understanding material behavior at the micro-scale. Each component contributes to a comprehensive framework for managing and mitigating uncertainties effectively in composite materials. The thesis is structured into several parts, including a literature review, peer-reviewed publications, and a discussion of results and conclusions. Through the development and validation of these models, the research contributes not only to the understanding of uncertainties in composite structures but also provides valuable tools for engineers to optimize designs iteratively and rigorously ​
​ADVERTIMENT. Tots els drets reservats. L'accés als continguts d'aquesta tesi doctoral i la seva utilització ha de respectar els drets de la persona autora. Pot ser utilitzada per a consulta o estudi personal, així com en activitats o materials d'investigació i docència en els termes establerts a l'art. 32 del Text Refós de la Llei de Propietat Intel·lectual (RDL 1/1996). Per altres utilitzacions es requereix l'autorització prèvia i expressa de la persona autora. En qualsevol cas, en la utilització dels seus continguts caldrà indicar de forma clara el nom i cognoms de la persona autora i el títol de la tesi doctoral. No s'autoritza la seva reproducció o altres formes d'explotació efectuades amb finalitats de lucre ni la seva comunicació pública des d'un lloc aliè al servei TDX. Tampoc s'autoritza la presentació del seu contingut en una finestra o marc aliè a TDX (framing). Aquesta reserva de drets afecta tant als continguts de la tesi com als seus resums i índexs.