The Impact of Missing Continuous Blood Glucose Samples on Machine Learning Models for Predicting Postprandial Hypoglycemia: An Experimental Analysis
dc.contributor.author
dc.date.accessioned
2024-06-07T11:15:09Z
dc.date.available
2024-06-07T11:15:09Z
dc.date.issued
2024-05-17
dc.identifier.uri
dc.description.abstract
This study investigates how missing data samples in continuous blood glucose data affect the prediction of postprandial hypoglycemia, which is crucial for diabetes management. We analyzed the impact of missing samples at different times before meals using two datasets: virtual patient data and real patient data. The study uses six commonly used machine learning models under varying conditions of missing samples, including custom and random patterns reflective of device failures and arbitrary data loss, with different levels of data removal before mealtimes. Additionally, the study explored different interpolation techniques to counter the effects of missing data samples. The research shows that missing samples generally reduce the model performance, but random forest is more robust to missing samples. The study concludes that the adverse effects of missing samples can be mitigated by leveraging complementary and informative non-point features. Consequently, our research highlights the importance of strategically handling missing data, selecting appropriate machine learning models, and considering feature types to enhance the performance of postprandial hypoglycemia predictions, thereby improving diabetes management
dc.description.sponsorship
This work was partially supported by the Spanish Ministry of Science and Innovation: PID2020-117171RA-I00 and PID2022-137723OB-C22; MCIN: MCIN/AEI/10.13039/501100011033; Government of Catalonia: 2017SGR1551—2021 FI_B 00896
dc.format.mimetype
application/pdf
dc.language.iso
eng
dc.publisher
MDPI (Multidisciplinary Digital Publishing Institute)
dc.relation
PID2020-117171RA-I00
PID2022-137723OB-C22
dc.relation.isformatof
Reproducció digital del document publicat a: https://doi.org/10.3390/math12101567
dc.relation.ispartof
Mathematics, 2024, vol. 12, núm. 10, p.1567
dc.relation.ispartofseries
Articles publicats (D-EEEiA)
dc.rights
Attribution 4.0 International
dc.rights.uri
dc.title
The Impact of Missing Continuous Blood Glucose Samples on Machine Learning Models for Predicting Postprandial Hypoglycemia: An Experimental Analysis
dc.type
info:eu-repo/semantics/article
dc.rights.accessRights
info:eu-repo/semantics/openAccess
dc.relation.projectID
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PID2020-117171RA-I00/ES/MODELADO Y CONTROL DE LA ESTIMULACION NO INVASIVA DEL NERVIO VAGO PARA ENFERMEDADES AUTOINMUNES/
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2021-2023/PID2022-137723OB-C22/ES/CONTROL DE GLUCOSA EN MUJERES VERSUS HOMBRES: HACIA TERAPIAS DE INSULINA ESPECIFICAS POR SEXO EN DIABETES TIPO 1/
dc.type.version
info:eu-repo/semantics/publishedVersion
dc.identifier.doi
dc.identifier.idgrec
038509
dc.contributor.funder
dc.type.peerreviewed
peer-reviewed
dc.relation.FundingProgramme
dc.relation.ProjectAcronym
dc.identifier.eissn
2227-7390