Lp-Norm for Compositional Data: Exploring the CoDa L1-Norm in Penalised Regression
dc.contributor.author
dc.date.accessioned
2024-05-10T11:53:40Z
dc.date.available
2024-05-10T11:53:40Z
dc.date.issued
2024-05-01
dc.identifier.uri
dc.description.abstract
The Least Absolute Shrinkage and Selection Operator (LASSO) regression technique has proven to be a valuable tool for fitting and reducing linear models. The trend of applying LASSO to compositional data is growing, thereby expanding its applicability to diverse scientific domains. This paper aims to contribute to this evolving landscape by undertaking a comprehensive exploration of the 𝐿1-norm
-norm for the penalty term of a LASSO regression in a compositional context. This implies first introducing a rigorous definition of the compositional 𝐿p-norm
-norm, as the particular geometric structure of the compositional sample space needs to be taken into account. The focus is subsequently extended to a meticulous data-driven analysis of the dimension reduction effects on linear models, providing valuable insights into the interplay between penalty term norms and model performance. An analysis of a microbial dataset illustrates the proposed approach
dc.description.sponsorship
This research was funded by Agency for Administration of University and Research grant number 2021SGR01197, and Ministerio de Ciencia e Innovación grant number PID2021-123833OB-I00, and Ministerio de Ciencia e Innovación grant number PRE2019-090976
dc.format.mimetype
application/pdf
dc.language.iso
eng
dc.publisher
MDPI (Multidisciplinary Digital Publishing Institute)
dc.relation
PID2021-123833OB-I00
dc.relation.isformatof
Reproducció digital del document publicat a: https://doi.org/10.3390/math12091388
dc.relation.ispartof
Mathematics, 2024, vol. 12, núm. 9, p. 1388
dc.relation.ispartofseries
Articles publicats (D-IMA)
dc.rights
Attribution 4.0 International
dc.rights.uri
dc.subject
dc.title
Lp-Norm for Compositional Data: Exploring the CoDa L1-Norm in Penalised Regression
dc.type
info:eu-repo/semantics/article
dc.rights.accessRights
info:eu-repo/semantics/openAccess
dc.relation.projectID
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2021-2023/PID2021-123833OB-I00/ES/GENERATION AND TRANSFER OF COMPOSITIONAL DATA ANALYSIS KNOWLEDGE/
dc.type.version
info:eu-repo/semantics/publishedVersion
dc.identifier.doi
dc.identifier.idgrec
039308
dc.contributor.funder
dc.type.peerreviewed
peer-reviewed
dc.relation.FundingProgramme
dc.relation.ProjectAcronym
dc.identifier.eissn
2227-7390