Competitive heavy metal adsorption on pinecone shells: Mathematical modelling of fixed-bed column and surface interaction insights

Pinecone shells are assessed as a cost-effective biosorbent for the removal of metal ions Pb(II), Cu(II), Cd(II), Ni(II), and Cr(VI) in a fixed-bed column. Influent concentration, bed height, and flowrate are studied to improve efficiency. The breakthrough data is well fitted by the Sips adsorption model, suggesting a surface complexation mechanism, with maximum adsorption capacities of 11.1 mg/g for Cu(II) and 66 mg/g for Pb(II). In multimetal solutions, the uptake sequence at breakthrough and saturation is Pb(II) > Cu(II) > Cd(II). Characterization via FTIR and XRD reveals carboxyl and hydroxyl functional groups interacting with metal ions. Ca(II) does not compete with Pb(II), Cu(II), and Cd(II) adsorption, highlighting the ability of pinecone to adsorb heavy metals via surface complexation. Its application in the treatment of industrial effluents containing Cu(II), Ni(II), and Cr(VI) is explored. The study investigates bed media regeneration via eluting adsorbed metal ions with hydrochloric acid solutions. The potential of pinecone shells as an efficient biosorbent for removing toxic metal ions from industrial wastewater is emphasized. These findings enhance our understanding of the adsorption mechanism and underscore the fixed-bed column system's applicability in real-world scenarios, addressing environmental concerns related to heavy metal contamination of industrial effluents ​
This document is licensed under a Creative Commons:Attribution - Non commercial (by-nc) Creative Commons by-nc4.0