Predicting Solvation Free Energies Using Electronegativity-Equalization Atomic Charges and a Dense Neural Network: A Generalized-Born Approach
dc.contributor.author
dc.date.accessioned
2024-03-20T12:23:04Z
dc.date.available
2024-03-20T12:23:04Z
dc.date.issued
2023-11-14
dc.identifier.issn
1549-9618
dc.identifier.uri
dc.description.abstract
I propose a dense Neural Network, ESE-GB-DNN, for evaluation of solvation free energies ΔG°solv for molecules and ions in water and nonaqueous solvents. As input features, it employs generalized-Born monatomic and diatomic terms, as well as atomic surface areas and the molecular volume. The electrostatics calculation is based on a specially modified version of electronegativity-equalization atomic charges. ESE-GB-DNN evaluates ΔG°solv in a simple and highly efficient way, yet it offers a high accuracy, often challenging that of standard DFT-based methods. For neutral solutes, ESE-GB-DNN yields an RMSE between 0.7 and 1.3 kcal/mol, depending on the solvent class. ESE-GB-DNN performs particularly well for nonaqueous solutions of ions, with an RMSE of about 0.7 kcal/mol. For ions in water, the RMSE is larger (2.9 kcal/mol)
dc.description.sponsorship
Financial support from the Spanish Ministerio de Ciencia, Innovación y Universidades (grant PID2020-113711GB-I00) is gratefully appreciated
Open Access funding provided thanks to the CRUE-CSIC agreement with American Chemical Society (ACS)
dc.format.mimetype
application/pdf
dc.language.iso
eng
dc.publisher
American Chemical Society (ACS)
dc.relation
PID2020-113711GB-I00
dc.relation.isformatof
Reproducció digital del document publicat a: https://doi.org/10.1021/acs.jctc.3c00858
dc.relation.ispartof
Journal of Chemical Theory and Computation, 2023, vol. 19, núm. 22, p. 8340-8350
dc.relation.ispartofseries
Articles publicats (D-Q)
dc.rights
Attribution 4.0 International
dc.rights.uri
dc.subject
dc.title
Predicting Solvation Free Energies Using Electronegativity-Equalization Atomic Charges and a Dense Neural Network: A Generalized-Born Approach
dc.type
info:eu-repo/semantics/article
dc.rights.accessRights
info:eu-repo/semantics/openAccess
dc.relation.projectID
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PID2020-113711GB-I00/ES/DISEÑO Y SINTESIS DE FULLERENOS PARA LA CONSTRUCCION DE CELDAS SOLARES HIBRIDAS DE PEROVSKITA Y FULERENOS D ALTO RENDIMIENTO. UN ENFOQUE EXPERIMENTAL Y COMPUTACIONAL SINERGICO/
dc.type.version
info:eu-repo/semantics/publishedVersion
dc.identifier.doi
dc.identifier.idgrec
037780
dc.contributor.funder
dc.type.peerreviewed
peer-reviewed
dc.relation.FundingProgramme
dc.relation.ProjectAcronym
dc.identifier.eissn
1549-9626