Hipertension demand forecasting using Cross-Correlation and lagged Multiple Linear Regression Models for anticipatinghHealth resources needs
dc.contributor.author
dc.date.accessioned
2024-03-14T08:56:12Z
dc.date.available
2024-03-14T08:56:12Z
dc.date.issued
2023-10-10
dc.identifier.issn
0922-6389
dc.identifier.uri
dc.description.abstract
This article presents an algorithm that uses a combination of cross-correlation analysis and lagged multiple linear regression models to predict the time-series of future demand for clinical visits associated with a certain diagnosis, specifically hypertension, in the Catalan health-care system. The algorithm aims to provide a robust and explainable feature selection set of predictors. The study demonstrates that it is possible to predict demand associated with a diagnosis through the demand for previous clinical visits, and identifies important predictors for example case hypertension-related visits. The data used is from the primary care services of the Catalan Institute of Health, and the methodology can be applied to optimize resource allocation in the healthcare system
dc.format.mimetype
application/pdf
dc.language.iso
eng
dc.publisher
IOS Press
dc.relation.isformatof
Reproducció digital del document publicat a: https://doi.org/10.3233/FAIA230682
dc.relation.ispartof
Frontiers in Artificial Intelligence and Applications (Ebook Series), 2023, vol. 375, p. 193-203
dc.relation.ispartofseries
Articles publicats (D-EEEiA)
dc.rights
Reconeixement-NoComercial 4.0 Internacional
dc.rights.uri
dc.source
Hernández Guillamet, Guillem López Ibáñez, Beatriz Estrada Cuxart, Oriol López Seguí, Francesc 2023 Hipertension demand forecasting using Cross-Correlation and lagged Multiple Linear Regression Models for anticipatinghHealth resources needs Frontiers in Artificial Intelligence and Applications 375
dc.subject
dc.title
Hipertension demand forecasting using Cross-Correlation and lagged Multiple Linear Regression Models for anticipatinghHealth resources needs
dc.type
info:eu-repo/semantics/article
dc.rights.accessRights
info:eu-repo/semantics/openAccess
dc.type.version
info:eu-repo/semantics/publishedVersion
dc.identifier.doi
dc.identifier.idgrec
038404
dc.type.peerreviewed
peer-reviewed
dc.identifier.eissn
1879-8314