Stability of equilibrium points in the spatial restricted N +1-body problem with Manev potential
dc.contributor.author
dc.date.accessioned
2024-01-22T07:30:25Z
dc.date.available
2024-01-22T07:30:26Z
dc.date.issued
2023-01-01
dc.identifier.issn
1536-0040
dc.identifier.uri
dc.description.abstract
We study the dynamics of an infinitesimal mass under the gravitational attraction of primaries arranged in a planar ring configuration plus the influence of the central mass with a Manev potential and parameter e related to the oblaticity or radiation source (according to the sign of the parameter). Specifically, we investigate the relative equilibria of the infinitesimal mass and their linear stability as functions of the parameter and the mass parameter, the ratio of mass of the central body to the mass of one of the N-1 remaining bodies. We also prove the nonexistence of binary collisions between the central body and the infinitesimal mass
dc.format.extent
29 p.
dc.format.mimetype
application/pdf
dc.language.iso
eng
dc.publisher
Society for Industrial and Applied Mathematics
dc.relation.isformatof
Versió postprint del document publicat a: https://doi.org/10.1137/23M1551912
dc.relation.ispartof
© SIAM Journal on Applied Dynamical Systems, 2023, vol. 22, núm. 4, p. 2732-2760
dc.relation.ispartofseries
Articles publicats (D-IMAE)
dc.rights
Reconeixement 4.0 Internacional
dc.rights.uri
dc.source
Ascencio, Mauricio Barrabés Vera, Esther Cors Iglesias, Josep Maria Vidal, Claudio 2023 Stability of equilibrium points in the spatial restricted N +1-body problem with Manev potential SIAM Journal on Applied Dynamical Systems 22 4 2732 2760
dc.subject
dc.title
Stability of equilibrium points in the spatial restricted N +1-body problem with Manev potential
dc.type
info:eu-repo/semantics/article
dc.rights.accessRights
info:eu-repo/semantics/openAccess
dc.type.version
info:eu-repo/semantics/acceptedVersion
dc.identifier.doi
dc.identifier.idgrec
037877
dc.type.peerreviewed
peer-reviewed