Quantum similarity and QSPR in Euclidean-, and Minkowskian–Banach spaces
dc.contributor.author
dc.date.accessioned
2023-02-22T09:34:18Z
dc.date.available
2023-02-22T09:34:18Z
dc.date.issued
2023-01-25
dc.identifier.issn
0259-9791
dc.identifier.uri
dc.description.abstract
This paper describes first how Euclidian- and Minkowskian–Banach spaces are related via the definition of a metric or signature vector. Also, it is discussed later on how these spaces can be generated using homothecies of the unit sphere or shell. Such possibility allows for proposing a process aiming at the dimension condensation in such spaces. The condensation of dimensions permits the account of the incompleteness of classical QSPR procedures, independently of whether the algorithm used is statistical bound or AI-neural network related. Next, a quantum QSPR framework within Minkowskian vector spaces is discussed. Then, a well-defined set of general isometric vectors is proposed, and connected to the set of molecular density functions generating the quantum similarity metric matrix. A convenient quantum QSPR algorithm emerges from this Minkowskian mathematical structure and isometry
dc.description.sponsorship
Open Access funding provided thanks to the CRUE-CSIC agreement with Springer Nature
dc.format.mimetype
application/pdf
dc.language.iso
eng
dc.publisher
Springer
dc.relation.isformatof
Reproducció digital del document publicat a: https://doi.org/10.1007/s10910-023-01454-y
dc.relation.ispartof
Journal of Mathematical Chemistry, 2023, vol. 61, p. 1016-1035
dc.relation.ispartofseries
Articles publicats (D-Q)
dc.rights
Attribution 4.0 International
dc.rights.uri
dc.subject
dc.title
Quantum similarity and QSPR in Euclidean-, and Minkowskian–Banach spaces
dc.type
info:eu-repo/semantics/article
dc.rights.accessRights
info:eu-repo/semantics/openAccess
dc.type.version
info:eu-repo/semantics/publishedVersion
dc.identifier.doi
dc.type.peerreviewed
peer-reviewed
dc.identifier.eissn
1572-8897