lrSVD: An efficient imputation algorithm for incomplete high-throughput compositional data
dc.contributor.author
dc.date.accessioned
2022-12-16T12:51:15Z
dc.date.available
2022-12-16T12:51:15Z
dc.date.issued
2022-11-26
dc.identifier.issn
0886-9383
dc.identifier.uri
dc.description.abstract
Compositional methods have been successfully integrated into the chemometric toolkit to analyse and model different types of data generated by modern high-throughput technologies. Within this compositional framework, the focus is put on the relative information conveyed in the data by using log-ratio coordinate representations. However, log-ratios cannot be computed when the data matrix is not complete. A new computationally efficient data imputation algorithm based on compositional principles and aimed at high-throughput continuous-valued compositions is introduced that relies on a constrained low-rank matrix approximation of the data. Simulation and real metabolomics data are used to demonstrate its performance and ability to deal with different forms of incomplete data: zeros, nondetects, missing values or a combination of them. The computer routines lrSVD and lrSVDplus are implemented in the R package zCompositions to facilitate its use by practitioners
dc.description.sponsorship
French National Research Agency (ANR). Grant Number: ANR-17-EURE-0010
Spanish Ministry of Science and Innovation. Grant Numbers: MCIN/AEI/10.13039/501100011033, PID2021-123833OB-I00
Open Access funding provided thanks to the CRUE-CSIC agreement with Wiley
dc.format.mimetype
application/pdf
dc.language.iso
eng
dc.publisher
Wiley
dc.relation
PID2021-123833OB-I00
dc.relation.isformatof
Reproducció digital del document publicat a: https://doi.org/10.1002/cem.3459
dc.relation.ispartof
Journal of Chemometrics, 2022, art.núm. e3459
dc.relation.ispartofseries
Articles publicats (D-IMA)
dc.rights
Attribution-NonCommercial-NoDerivatives 4.0 International
dc.rights.uri
dc.subject
dc.title
lrSVD: An efficient imputation algorithm for incomplete high-throughput compositional data
dc.type
info:eu-repo/semantics/article
dc.rights.accessRights
info:eu-repo/semantics/openAccess
dc.relation.projectID
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2021-2023/PID2021-123833OB-I00/ES/GENERATION AND TRANSFER OF COMPOSITIONAL DATA ANALYSIS KNOWLEDGE/
dc.type.version
info:eu-repo/semantics/publishedVersion
dc.identifier.doi
dc.identifier.idgrec
035877
dc.contributor.funder
dc.type.peerreviewed
peer-reviewed
dc.relation.FundingProgramme
dc.relation.ProjectAcronym
dc.identifier.eissn
1099-128X