Conditional Synthesis of Blood Glucose Profiles for T1D Patients Using Deep Generative Models
dc.contributor.author
dc.date.accessioned
2022-10-24T11:40:09Z
dc.date.available
2022-10-24T11:40:09Z
dc.date.issued
2022-10-12
dc.identifier.uri
dc.description.abstract
Mathematical modeling of the glucose–insulin system forms the core of simulators in the field of glucose metabolism. The complexity of human biological systems makes it a challenging task for the physiological models to encompass the entirety of such systems. Even though modern diabetes simulators perform a respectable task of simulating the glucose–insulin action, they are unable to estimate various phenomena affecting the glycemic profile of an individual such as glycemic disturbances and patient behavior. This research work presents a potential solution to this problem by proposing a method for the generation of blood glucose values conditioned on plasma insulin approximation of type 1 diabetes patients using a pixel-to-pixel generative adversarial network. Two type-1 diabetes cohorts comprising 29 and 6 patients, respectively, are used to train the generative model. This study shows that the generated blood glucose values are statistically similar to the real blood glucose values, mimicking the time-in-range results for each of the standard blood glucose ranges in type 1 diabetes management and obtaining similar means and variability outcomes. Furthermore, the causal relationship between the plasma insulin values and the generated blood glucose conforms to the same relationship observed in real patients. These results herald the aptness of deep generative models for the generation of virtual patients with diabetes
dc.description.sponsorship
This work was partially supported by the Spanish Ministry of Universities, the European Union through Next GenerationEU (Margarita Salas), the Spanish Ministry of Science and Innovation through grant PID2019107722RBC22/AEI/10.13039/501100011033, PID2020-117171RA-I00 funded by MCIN/AEI/10.13039/501100011033 and the Government of Catalonia under 2017SGR1551 and 2020 FI_B 00965
dc.format.mimetype
application/pdf
dc.language.iso
eng
dc.publisher
MDPI (Multidisciplinary Digital Publishing Institute)
dc.relation
PID2019-107722RB-C22
PID2020-117171RA-I00
dc.relation.isformatof
Reproducció digital del document publicat a: https://doi.org/10.3390/math10203741
dc.relation.ispartof
Mathematics, 2022, vol. 10, núm. 20, p. 3741
dc.relation.ispartofseries
Articles publicats (D-EEEiA)
dc.rights
Attribution 4.0 International
dc.rights.uri
dc.subject
dc.title
Conditional Synthesis of Blood Glucose Profiles for T1D Patients Using Deep Generative Models
dc.type
info:eu-repo/semantics/article
dc.rights.accessRights
info:eu-repo/semantics/openAccess
dc.relation.projectID
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PID2019-107722RB-C22/ES/PATIENT-TAILORED SOLUTIONS FOR BLOOD GLUCOSE CONTROL IN TYPE 1 DIABETES/
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PID2020-117171RA-I00/ES/MODELADO Y CONTROL DE LA ESTIMULACION NO INVASIVA DEL NERVIO VAGO PARA ENFERMEDADES AUTOINMUNES/
dc.type.version
info:eu-repo/semantics/publishedVersion
dc.identifier.doi
dc.identifier.idgrec
035744
dc.contributor.funder
dc.type.peerreviewed
peer-reviewed
dc.relation.FundingProgramme
dc.relation.ProjectAcronym
dc.identifier.eissn
2227-7390