Information-Theoretic Channel for Multi-exposure Image Fusion
dc.contributor.author
dc.date.accessioned
2022-10-03T06:27:55Z
dc.date.available
2022-10-28T05:46:33Z
dc.date.issued
2021-10-08
dc.identifier.issn
0010-4620
dc.identifier.uri
dc.description.abstract
Multi-exposure image fusion has emerged as an increasingly important and interesting research topic in information fusion. It aims at producing an image with high quality by fusing a set of differently exposed images. In this article, we present a pixel-level method for multi-exposure image fusion based on an information-theoretic approach. In our scheme, an information channel between two source images is used to compute the Rényi entropy associated with each pixel in one image with respect to the other image and hence to produce the weight maps for the source images. Since direct weight-averaging of the source images introduce unpleasing artifacts, we employ Laplacian multi-scale fusion. Based on this pyramid scheme, images at every scale are fused by weight maps, and a final fused image is inversely reconstructed. Multi-exposure image fusion with the proposed method is easy to construct and implement and can deliver, in less than a second for a set of three input images of size 512×340, competitive and compelling results versus state-of-art methods through visual comparison and objective evaluation
dc.description.sponsorship
This work is supported by the National Natural Science Foundation of China under grant No.61702359, and by grant PID2019-106426RB-C31 and by grant PID2019-106426RB-C31 from the Agencia Estatal de Investigación (AEI) from Spanish Government. Part of this work was supported by a grant of the Romanian Ministry of Education and Research, CNCS – UEFISCDI, project number PN-III-P1-1.1-TE-2019-1111, within PNCDI III
dc.format.mimetype
application/pdf
dc.language.iso
eng
dc.publisher
Oxford Academic
dc.relation.isformatof
Versió postprint del document publicat a: https://doi.org/10.1093/comjnl/bxab148
dc.relation.ispartof
© Computer Journal, 2021, vol. undef, núm. undef, p. bxab148
dc.relation.ispartofseries
Articles publicats (D-IMAE)
dc.rights
Tots els drets reservats
dc.source
Hao, Qiaohong Zhao, Qi Sbert, Mateu Feng, Qinghe Ancuti, Cosmin Feixas Feixas, Miquel Vila Duran, Marius Zhang, Jiawan 2021 Information-Theoretic Channel for Multi-exposure Image Fusion Computer Journal undef undef bxab148
dc.subject
dc.title
Information-Theoretic Channel for Multi-exposure Image Fusion
dc.type
info:eu-repo/semantics/article
dc.rights.accessRights
info:eu-repo/semantics/openAccess
dc.embargo.terms
2022-10-08T00:00:00Z
dc.date.embargoEndDate
info:eu-repo/date/embargoEnd/2022-10-08
dc.relation.projectID
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PID2019-106426RB-C31/ES/TECNOLOGIAS INTERACTIVAS PARA MEJORAR LOS JUEGOS SERIOS PARA LA EDUCACION, LA SALUD Y LA INDUSTRIA - UDG/
dc.type.version
info:eu-repo/semantics/acceptedVersion
dc.identifier.doi
dc.identifier.idgrec
033973
dc.contributor.funder
dc.relation.FundingProgramme
dc.relation.ProjectAcronym
dc.identifier.eissn
1460-2067