Changes in Protonation States of In-Pathway Residues can Alter Ligand Binding Pathways Obtained From Spontaneous Binding Molecular Dynamics Simulations
dc.contributor.author
dc.date.accessioned
2022-09-30T09:43:08Z
dc.date.available
2022-09-30T09:43:08Z
dc.date.issued
2022-07-04
dc.identifier.uri
dc.description.abstract
Protein-ligand binding processes often involve changes in protonation states that can be key to recognize and orient the ligand in the binding site. The pathways through which (bio)molecules interplay to attain productively bound complexes are intricate and involve a series of interconnected intermediate and transition states. Molecular dynamics (MD) simulations and enhanced sampling techniques are commonly used to characterize the spontaneous binding of a ligand to its receptor. However, the effect of protonation state changes of in-pathway residues in spontaneous binding MD simulations remained mostly unexplored. Here, we used molecular dynamics simulations to reconstruct the trypsin-benzamidine binding pathway considering different protonation states of His57. This residue is part of the trypsin catalytic triad and is located more than 10 Å away from Asp189, which is responsible for benzamidine binding in the trypsin S1 pocket. Our MD simulations showed that the binding pathways that benzamidine follow to target the S1 binding site are critically dependent on the His57 protonation state. Binding of benzamidine frequently occurs when His57 is protonated in the delta nitrogen while the binding process is significantly less frequent when His57 is positively charged. Constant-pH MD simulations retrieved the equilibrium populations of His57 protonation states at trypsin active pH offering a clearer picture of benzamidine recognition and binding. These results indicate that properly accounting for protonation states of distal residues can be important in spontaneous binding MD simulations
dc.description.sponsorship
This work was supported by the Spanish MICINN projects PID 2019-111300GA-I00 (MG-B), RTI 2018-101032-J100 (FF). We thank Spanish MICINN for Ramón y Cajal fellowships RYC 2020-028628-I (MG-B) and RYC 2020-029552-I (FF). We thank the Generalitat de Catalunya for the emerging group CompBioLab (2017 SGR-1707), the consolidated group DiMoCat (2017 SGR-39), for predoctoral FI fellowship 2022 FI_B 00615 (HG) and Beatriu de Pinós H2020 MSCA-Cofund 2018-BP-00204 project (to MG-B)
dc.format.mimetype
application/pdf
dc.language.iso
eng
dc.publisher
Frontiers Media
dc.relation
PID2019-111300GA-I00
RTI2018-101032-J-I00
dc.relation.isformatof
Reproducció digital del document publicat a: https://doi.org/10.3389/fmolb.2022.922361
dc.relation.ispartof
Frontiers in Molecular Biosciences, vol. 9, art. núm. 922361
dc.relation.ispartofseries
Articles publicats (D-Q)
dc.rights
Attribution 4.0 International
dc.rights.uri
dc.subject
dc.title
Changes in Protonation States of In-Pathway Residues can Alter Ligand Binding Pathways Obtained From Spontaneous Binding Molecular Dynamics Simulations
dc.type
info:eu-repo/semantics/article
dc.rights.accessRights
info:eu-repo/semantics/openAccess
dc.relation.projectID
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PID2019-111300GA-I00/ES/CARACTERIZACION MULTIESCALAR DE INTERMEDIOS REACTIVOS PARA EL DESCUBRIMIENTO Y DISEÑO DE NUEVAS ACTIVIDADES BIOCATALITICAS/
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/RTI2018-101032-J-I00/ES/ACELERACION DE LOS PROCESOS (BIO)MOLECULARES DE RECONOCIMIENTO Y ENSAMBLAJE MOLECULAR CON METODOS COMPUTACIONALES/
dc.type.version
info:eu-repo/semantics/publishedVersion
dc.identifier.doi
dc.identifier.idgrec
035652
dc.contributor.funder
dc.type.peerreviewed
peer-reviewed
dc.relation.FundingProgramme
dc.relation.ProjectAcronym
dc.identifier.eissn
2296-889X