An efficient initiator system containing AlCl3 and supported ionic-liquid for the synthesis of conventional grade polyisobutylene in mild conditions
dc.contributor.author
dc.date.accessioned
2022-09-26T11:10:53Z
dc.date.available
2022-09-26T11:10:53Z
dc.date.issued
2022-09-18
dc.identifier.issn
0167-7322
dc.identifier.uri
dc.description.abstract
Ionic liquid based systems are used to facilitate the cationic polymerization of isobutylene to conventional grade polyisobutylene (PIB) using AlCl3 as an initiator. Specifically, the compound 1-butyl-3-methylimidazolium chloride (IL) is employed as a reference system due to its simplicity, as well as the polyionic liquid (PIL), prepared via radical polymerization of 1-butyl-3-vinylimidazolium chloride, and the halloysite clay (Hal) supported ionic liquid (S-IL). The overall results stated that the designed AlCl3/S-IL initiator system can be used as a safer and greener alternative to the industrially used BF3 system, in the development of isobutylene polymerizations under mild reaction conditions to conventional grade PIB for viscosity improvement applications. The microstructure and final properties of the as-synthesized PIB was unraveled and compared to Indopole 2100, as a commercial PIB. DFT calculations were performed to understand the different performance of IL and PIL with respect to the S-IL system, and also to show why the catalyst loading for the latter system is lower, as well as to understand how each of the three systems sequesters the catalyst AlCl3. Since the interaction is non-covalent or ionic, in addition to NBO charges, NCI plots were also used
dc.description.sponsorship
Albert Poater is a Serra Húnter Fellow and ICREA Academia Prize 2019, and thanks the Spanish Ministerio de Ciencia e Innovación for projects PID2021-127423NB-I00 and PGC2018-097722-B-I00.
Open Access funding provided thanks to the CRUE-CSIC agreement with Elsevier
dc.format.mimetype
application/pdf
dc.language.iso
eng
dc.publisher
Elsevier
dc.relation.isformatof
Reproducció digital del document publicat a: https://doi.org/10.1016/j.molliq.2022.120381
dc.relation.ispartof
Journal of Molecular Liquids Available, 2022, art. núm.120381
dc.relation.ispartofseries
Articles publicats (D-Q)
dc.rights
Attribution-NonCommercial-NoDerivatives 4.0 International
dc.rights.uri
dc.title
An efficient initiator system containing AlCl3 and supported ionic-liquid for the synthesis of conventional grade polyisobutylene in mild conditions
dc.type
info:eu-repo/semantics/article
dc.rights.accessRights
info:eu-repo/semantics/openAccess
dc.relation.projectID
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2021-2023/PID2021-127423NB-I00/ES/CATÀLISIS PREDICTIVA PARA CAMBIAR EL ORDEN SECUENCIAL ENTRE EXPERIMENTOS I CÁLCULOS/
dc.type.version
info:eu-repo/semantics/publishedVersion
dc.identifier.doi
dc.contributor.funder
dc.type.peerreviewed
peer-reviewed
dc.relation.FundingProgramme
dc.relation.ProjectAcronym
dc.identifier.eissn
1873-3166