Non targeted screening of nitrogen containing disinfection by-products in formation potential tests of river water and subsequent monitoring in tap water samples

Compartir
The generation of disinfection by-products during water chlorination is a major concern in water treatment, given the potential health risks that these substances may pose. In particular, nitrogen-containing DBPs are believed to have greater toxicological significance than carbon-based DBPs. Hence, high performance liquid chromatography coupled to high-resolution mass spectrometry (HPLC-HRMS) in positive mode was employed to identify new non-volatile nitrogen containing disinfection by-products (DBPs) and to assess their presence in potable water. Nine water samples were taken in the Llobregat river, in the context of a water reuse trial, near the catchment of a drinking water treatment plant (DWTP) in 2019. River samples were disinfected with chlorine under controlled formation potential tests conditions and analysed with a non-target approach. The peak lists of raw and chlorinated samples were compared exhaustively, resulting in an extensive list of 495 DBPs that include bromine and/or chlorine atoms. 172 of these species were found frequently, in three or more chlorinated samples. The empirical formulae of these DBPs were unambiguously annotated on the basis of accurate m/z measurements, isotopic patterns and common heuristic rules. Most of the annotated species (310) contained bromide, which is consistent with the relatively high bromide content of the Llobregat basin (>0.3 mg/l). Drinking water samples were taken at the outlet of the DWTP during the same sampling period. According to their analysis, a large portion of the DBPs detected after the formation potential tests do not reach real-life drinking water, which suggests that the treatment train successfully removes a significant fraction of DBP precursors. However, 131 DBPs could still be detected in the final product water. A larger sampling was carried in the Barcelona water distribution network, during six consecutive weeks, and it revealed the presence of 78 halogenated DBPs in end-consumer water, most of which were nitrogen-containing. MS/MS fragmentation and retention times were employed to tentatively suggest molecular structure for these recalcitrant DBPs ​
Aquest document està subjecte a una llicència Creative Commons:Reconeixement - No comercial - Sense obra derivada (by-nc-nd) Creative Commons by-nc-nd4.0