Medical image segmentation based on mutual information maximization
dc.contributor.author
dc.date.accessioned
2022-09-05T10:13:57Z
dc.date.available
2022-09-05T10:13:57Z
dc.date.issued
2004
dc.identifier.issn
0302-9743
dc.identifier.uri
dc.description.abstract
In this paper we propose a two-step mutual information-based algorithm for medical image segmentation. In the first step, the image is structured into homogeneous regions, by maximizing the mutual information gain of the channel going from the histogram bins to the regions of the partitioned image. In the second step, the intensity bins of the histogram are clustered by minimizing the mutual information loss of the reversed channel. Thus, the compression of the channel variables is guided by the preservation of the information on the other. An important application of this algorithm is to preprocess the images for multimodal image registration. In particular, for a low number of histogram bins, an outstanding robustness in the registration process is obtained by using as input the previously segmented images
dc.format.extent
8 p.
dc.format.mimetype
application/pdf
dc.language.iso
eng
dc.publisher
Springer
dc.relation.isformatof
Versió postprint del document publicat a: https://doi.org/10.1007/978-3-540-30135-6_17
dc.relation.ispartof
© Lecture Notes in Computer Science, 2004, vol. 3216, núm. 1, p. 135-142
dc.relation.ispartofseries
Articles publicats (D-IMAE)
dc.rights
Tots els drets reservats
dc.source
Rigau Vilalta, Jaume Feixas Feixas, Miquel Sbert, Mateu Bardera i Reig, Antoni Boada, Imma 2004 Medical image segmentation based on mutual information maximization Lecture Notes in Computer Science 3216 1 135 142
dc.subject
dc.title
Medical image segmentation based on mutual information maximization
dc.type
info:eu-repo/semantics/article
dc.rights.accessRights
info:eu-repo/semantics/openAccess
dc.type.version
info:eu-repo/semantics/acceptedVersion
dc.identifier.doi
dc.identifier.idgrec
006099
dc.type.peerreviewed
peer-reviewed
dc.identifier.eissn
1611-3349