Image Segmentation Using Excess Entropy
dc.contributor.author
dc.date.accessioned
2022-09-05T08:31:02Z
dc.date.available
2022-09-05T08:31:03Z
dc.date.issued
2009-01
dc.identifier.issn
1939-8018
dc.identifier.uri
dc.description.abstract
We present a novel information-theoretic approach for thresholding-based segmentation that uses the excess entropy to measure the structural information of a 2D or 3D image and to locate the optimal thresholds. This approach is based on the conjecture that the optimal thresholding corresponds to the segmentation with maximum structure, i.e., maximum excess entropy. The contributions of this paper are several fold. First, we introduce the excess entropy as a measure of the spatial structure of an image. Second, we present an adaptive thresholding method based on the maximization of excess entropy. Third, we propose the use of uniformly distributed random lines to overcome the main drawbacks of the excess entropy computation. To show the good performance of the proposed segmentation approach different experiments on synthetic and real brain models are carried out
dc.format.extent
10 p.
dc.format.mimetype
application/pdf
dc.language.iso
eng
dc.publisher
Springer
dc.relation.isformatof
Versió postprint del document publicat a: https://doi.org/10.1007/s11265-008-0194-6
dc.relation.ispartof
© Journal of Signal Processing Systems for Signal, Image, and Video Technology, 2009, vol. 54, num. 1-3, p. 205-214
dc.relation.ispartofseries
Articles publicats (D-IMAE)
dc.rights
Tots els drets reservats
dc.source
Bardera i Reig, Antoni Boada, Imma Feixas Feixas, Miquel Sbert, Mateu 2009 Image Segmentation Using Excess Entropy Journal of Signal Processing Systems for Signal, Image, and Video Technology 54 1-3 205 214
dc.subject
dc.title
Image Segmentation Using Excess Entropy
dc.type
info:eu-repo/semantics/article
dc.rights.accessRights
info:eu-repo/semantics/openAccess
dc.type.version
info:eu-repo/semantics/acceptedVersion
dc.identifier.doi
dc.identifier.idgrec
010505
dc.type.peerreviewed
peer-reviewed
dc.identifier.eissn
1939-8115