Time Evolution of the Millisecond Allosteric Activation of Imidazole Glycerol Phosphate Synthase
dc.contributor.author
dc.date.accessioned
2022-07-12T08:20:09Z
dc.date.available
2022-07-12T08:20:09Z
dc.date.issued
2022-04-12
dc.identifier.issn
0002-7863
dc.identifier.uri
dc.description.abstract
Deciphering the molecular mechanisms of enzymatic allosteric regulation requires the structural characterization of functional states and also their time evolution toward the formation of the allosterically activated ternary complex. The transient nature and usually slow millisecond time scale interconversion between these functional states hamper their experimental and computational characterization. Here, we combine extensive molecular dynamics simulations, enhanced sampling techniques, and dynamical networks to describe the allosteric activation of imidazole glycerol phosphate synthase (IGPS) from the substrate-free form to the active ternary complex. IGPS is a heterodimeric bienzyme complex whose HisH subunit is responsible for hydrolyzing glutamine and delivering ammonia for the cyclase activity in HisF. Despite significant advances in understanding the underlying allosteric mechanism, essential molecular details of the long-range millisecond allosteric activation of IGPS remain hidden. Without using a priori information of the active state, our simulations uncover how IGPS, with the allosteric effector bound in HisF, spontaneously captures glutamine in a catalytically inactive HisH conformation, subsequently attains a closed HisF:HisH interface, and finally forms the oxyanion hole in HisH for efficient glutamine hydrolysis. We show that the combined effector and substrate binding dramatically decreases the conformational barrier associated with oxyanion hole formation, in line with the experimentally observed 4500-fold activity increase in glutamine hydrolysis. The allosteric activation is controlled by correlated time-evolving dynamic networks connecting the effector and substrate binding sites. This computational strategy tailored to describe millisecond events can be used to rationalize the effect of mutations on the allosteric regulation and guide IGPS engineering efforts
dc.description.sponsorship
The authors thank the Generalitat de Catalunya for the
emerging group CompBioLab (2017 SGR-1707) and Spanish
MINECO for projects PGC2018-102192-B-I00 (S.O),
RTI2018-101032-J100 (F.F), and RYC2020-029552-I (F.F.).
S.O. is grateful for the funding from the European Research
Council (ERC) under the European Union’s Horizon 2020
Research and Innovation Program (ERC-2015-StG-679001)
and the Human Frontier Science Program (HFSP) for Project
Grant RGP0054/2020. F.F. thanks the Spanish Supercomputing Network (RES) for access to supercomputing resources (Project BCV-2021-1-0015). M.A.M.-S. was supported by the National Research Foundation of Korea (NRF) under the Brain Pool Program (NRF2021H1D3A2A02038434).
Open Access funding provided thanks to the CRUE-CSIC agreement with ACS.
dc.format.mimetype
application/pdf
dc.language.iso
eng
dc.publisher
American Chemical Society (ACS)
dc.relation
PGC2018-102192-B-I00
RTI2018-101032-J-I00
dc.relation.isformatof
Reproducció digital del document publicat a: https://doi.org/10.1021/jacs.1c12629
dc.relation.ispartof
Journal of the American Chemical Society, 2022, vol. 144, núm. 16, p. 7146-7159
dc.relation.ispartofseries
Articles publicats (D-Q)
dc.rights
Attribution 4.0 International
dc.rights.uri
dc.subject
dc.title
Time Evolution of the Millisecond Allosteric Activation of Imidazole Glycerol Phosphate Synthase
dc.type
info:eu-repo/semantics/article
dc.rights.accessRights
info:eu-repo/semantics/openAccess
dc.relation.projectID
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PGC2018-102192-B-I00/ES/EVOLUCION COMPUTACIONAL DE ENZIMAS MEDIANTE LA EXPLORACION DE LA SUPERFICIE CONFORMACIONAL/
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/RTI2018-101032-J-I00/ES/ACELERACION DE LOS PROCESOS (BIO)MOLECULARES DE RECONOCIMIENTO Y ENSAMBLAJE MOLECULAR CON METODOS COMPUTACIONALES/
info:eu-repo/grantAgreement/EC/H2020/679001/EU/Network models for the computational design of proficient enzymes/NetMoDEzyme
dc.type.version
info:eu-repo/semantics/publishedVersion
dc.identifier.doi
dc.contributor.funder
dc.type.peerreviewed
peer-reviewed
dc.relation.FundingProgramme
dc.relation.ProjectAcronym
dc.identifier.eissn
1520-5126