Generation of Individualized Synthetic Data for Augmentation of the Type 1 Diabetes Data Sets Using Deep Learning Models
dc.contributor.author
dc.date.accessioned
2022-07-04T06:50:18Z
dc.date.available
2022-07-04T06:50:18Z
dc.date.issued
2022-06-30
dc.identifier.uri
dc.description.abstract
In this paper, we present a methodology based on generative adversarial network architecture to generate synthetic data sets with the intention of augmenting continuous glucose monitor data from individual patients. We use these synthetic data with the aim of improving the overall performance of prediction models based on machine learning techniques. Experiments were performed on two cohorts of patients suffering from type 1 diabetes mellitus with significant differences in their clinical outcomes. In the first contribution, we have demonstrated that the chosen methodology is able to replicate the intrinsic characteristics of individual patients following the statistical distributions of the original data. Next, a second contribution demonstrates the potential of synthetic data to improve the performance of machine learning approaches by testing and comparing different prediction models for the problem of predicting nocturnal hypoglycemic events in type 1 diabetic patients. The results obtained for both generative and predictive models are quite encouraging and set a precedent in the use of generative techniques to train new machine learning models
dc.description.sponsorship
This work was partially supported by the Spanish Ministry of Science and Innovation through grant [PID2019-107722RB-C22 /AEI/10.13039/501100011033]; [PID2020-117171RA-I00 funded by MCIN/AEI/10.13039/501100011033]; the Government of Catalonia under [2017SGR1551
dc.format.mimetype
application/pdf
dc.language.iso
eng
dc.publisher
MDPI (Multidisciplinary Digital Publishing Institute)
dc.relation
PID2019-107722RB-C22
PID2020-117171RA-I00
dc.relation.isformatof
Reproducció digital del document publicat a: https://doi.org/10.3390/s22134944
dc.relation.ispartof
Sensors, 2022, vol. 22, núm. 13, p. 4944
dc.relation.ispartofseries
Articles publicats (IIIA)
dc.rights
Attribution 4.0 International
dc.rights.uri
dc.subject
dc.title
Generation of Individualized Synthetic Data for Augmentation of the Type 1 Diabetes Data Sets Using Deep Learning Models
dc.type
info:eu-repo/semantics/article
dc.rights.accessRights
info:eu-repo/semantics/openAccess
dc.relation.projectID
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PID2019-107722RB-C22/ES/PATIENT-TAILORED SOLUTIONS FOR BLOOD GLUCOSE CONTROL IN TYPE 1 DIABETES/
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PID2020-117171RA-I00/ES/MODELADO Y CONTROL DE LA ESTIMULACION NO INVASIVA DEL NERVIO VAGO PARA ENFERMEDADES AUTOINMUNES/
dc.type.version
info:eu-repo/semantics/publishedVersion
dc.identifier.doi
dc.contributor.funder
dc.type.peerreviewed
peer-reviewed
dc.relation.FundingProgramme
dc.relation.ProjectAcronym
dc.identifier.eissn
1424-8220