In Silico Identification and Experimental Validation of Distal Activity-Enhancing Mutations in Tryptophan Synthase
dc.contributor.author
dc.date.accessioned
2022-01-21T12:12:52Z
dc.date.available
2022-01-21T12:12:52Z
dc.date.issued
2021-10-28
dc.identifier.uri
dc.description.abstract
Allostery is a central mechanism for the regulation of multi-enzyme complexes. The mechanistic basis that drives allosteric regulation is poorly understood but harbors key information for enzyme engineering. In the present study, we focus on the tryptophan synthase complex that is composed of TrpA and TrpB subunits, which allosterically activate each other. Specifically, we develop a rational approach for identifying key amino acid residues of TrpB distal from the active site. Those residues are predicted to be crucial for shifting the inefficient conformational ensemble of the isolated TrpB to a productive ensemble through intra-subunit allosteric effects. The experimental validation of the conformationally driven TrpB design demonstrates its superior stand-alone activity in the absence of TrpA, comparable to those enhancements obtained after multiple rounds of experimental laboratory evolution. Our work evidences that the current challenge of distal active site prediction for enhanced function in computational enzyme design has become within reach
dc.description.sponsorship
We thank the Generalitat de Catalunya for the emerging group
CompBioLab (2017 SGR-1707) and Spanish MINECO for
project PGC2018-102192-B-I00. M.A.M.S. was supported by
the Spanish MINECO for a PhD fellowship (BES-2015-
074964) and the National Research Foundation of Korea
(NRF) under the Brain Pool Program (NRF2021H1D3A2A02038434), J. I. F. was supported by the
European Community for Marie Curie fellowship (H2020-
MSCA-IF-2016-753045) and Juan de la Cierva-Incorporación
fellowship (IJCI-2017-34129). S.O. is grateful to the funding
from the European Research Council (ERC) under the
European Union’s Horizon 2020 research and innovation
program (ERC-2015-StG-679001) and the Human Frontier
Science Program (HFSP) for project grant RGP0054/2020
dc.format.mimetype
application/pdf
dc.language.iso
eng
dc.publisher
American Chemical Society (ACS)
dc.relation
PGC2018-102192-B-I00
dc.relation.isformatof
Reproducció digital del document publicat a: https://doi.org/10.1021/acscatal.1c03950
dc.relation.ispartof
ACS Catalysis, 2021, vol. 11, núm. 21, p. 13733-13743
dc.relation.ispartofseries
Articles publicats (D-Q)
dc.rights
Attribution 4.0 International
dc.rights.uri
dc.title
In Silico Identification and Experimental Validation of Distal Activity-Enhancing Mutations in Tryptophan Synthase
dc.type
info:eu-repo/semantics/article
dc.rights.accessRights
info:eu-repo/semantics/openAccess
dc.relation.projectID
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PGC2018-102192-B-I00/ES/EVOLUCION COMPUTACIONAL DE ENZIMAS MEDIANTE LA EXPLORACION DE LA SUPERFICIE CONFORMACIONAL/
info:eu-repo/grantAgreement/EC/H2020/753045/EU/COMPUTATIONAL EVOLUTION OF ENZYME VARIANTS THROUGH CONFORMATIONAL NETWORKS/EnzVolNet
info:eu-repo/grantAgreement/EC/H2020/679001/EU/Network models for the computational design of proficient enzymes/NetMoDEzyme
dc.type.version
info:eu-repo/semantics/publishedVersion
dc.identifier.doi
dc.contributor.funder
dc.type.peerreviewed
peer-reviewed
dc.relation.FundingProgramme
dc.relation.ProjectAcronym
dc.identifier.eissn
2155-5435