Definition of Residential Power Load Profiles Clusters Using Machine Learning and Spatial Analysis
dc.contributor.author
dc.date.accessioned
2021-10-21T06:46:29Z
dc.date.available
2021-10-21T06:46:29Z
dc.date.issued
2021-10-12
dc.identifier.uri
dc.description.abstract
This study presents a novel approach for discovering actionable knowledge and exploring data-based models from data recorded by household smart meters. The proposed framework is supported by a machine learning architecture based on the application of data mining methods and spatial analysis to extract temporal and spatial restricted clusters of characteristic monthly electricity load profiles. In addition, it uses these clusters to perform short-term load forecasting (1 week) using recurrent neural networks. The approach analyses a database with measurements of 1000 smart meters gathered during 4 years in Guayaquil, Ecuador. Results of the proposed methodology led us to obtain a precise and efficient stratification of typical consumption patterns and to extract neighbour information to improve the performance of residential energy consumption forecasting
dc.description.sponsorship
The University of Girona and SENESCYT-Ecuador awarded the author with a pre-doctoral
grant of Secretaría Nacional de Educación Superior, Ciencia, Tecnología e Innovación, (SENESCYT)—
Ecuador. This work has been partially funded by the grant PID2020-117171RA-I00 funded by
MCIN/AEI/10.13039/501100011033, the Government of Catalonia under 2017SGR1551 and the
E-LAND project which received funding from the European Union’s Horizon 2020 research and
innovation programme under grant agreement No 824388
dc.format.mimetype
application/pdf
dc.language.iso
eng
dc.publisher
MDPI (Multidisciplinary Digital Publishing Institute)
dc.relation
PID2020-117171RA-I00
dc.relation.isformatof
Reproducció digital del document publicat a: https://doi.org/10.3390/en14206565
dc.relation.ispartof
Energies, 2021, vol. 14, núm. 20, p. 6565
dc.relation.ispartofseries
Articles publicats (D-EEEiA)
dc.rights
Attribution 4.0 International
dc.rights.uri
dc.subject
dc.title
Definition of Residential Power Load Profiles Clusters Using Machine Learning and Spatial Analysis
dc.type
info:eu-repo/semantics/article
dc.rights.accessRights
info:eu-repo/semantics/openAccess
dc.relation.projectID
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PID2020-117171RA-I00/ES/MODELADO Y CONTROL DE LA ESTIMULACIÓN NO INVASIVA DEL NERVIO VAGO PARA ENFERMEDADES AUTOINMUNES/
info:eu-repo/grantAgreement/EC/H2020/824388/EU/Integrated multi-vector management system for Energy isLANDs/E-LAND
dc.type.version
info:eu-repo/semantics/publishedVersion
dc.identifier.doi
dc.contributor.funder
dc.type.peerreviewed
peer-reviewed
dc.relation.FundingProgramme
dc.relation.ProjectAcronym
dc.identifier.eissn
1996-1073