Analysis of Nature-Inspired Algorithms for Long-Term Digital Preservation
dc.contributor.author
dc.date.accessioned
2021-09-28T08:48:45Z
dc.date.available
2021-09-28T08:48:45Z
dc.date.issued
2021-09-16
dc.identifier.uri
dc.description.abstract
Digital preservation is a research area devoted to keeping digital assets preserved and usable for many years. Out of the many approaches to digital preservation, the present research article follows a new object-centered digital preservation paradigm where digital objects share part of the responsibility for preservation: they can move, replicate, and evolve to a higher-quality format inside a digital ecosystem. In the new framework, the behavior of digital objects needs to be modeled in order to obtain the best preservation strategy. Thus, digital objects are programmed with the mission of their own long-term self-preservation, which entails being accessible and reproducible by users at any time in the future regardless of frequent technological changes due to software and hardware upgrades. Three nature-inspired computational intelligence algorithms, based on the collective behavior of decentralized and self-organized systems, were selected for the modeling approach: multipopulation genetic algorithm, ant colony optimization, and a virus-based algorithm. TiM, a simulated environment for running distributed digital ecosystems, was used to perform the experiments. The results map the relation between the models and the expected object diversity obtained in short- and mid-term digital preservation scenarios. Comparing the results, the best performance corresponded to the multipopulation genetic algorithm. The article aims to be a first step in the digital self-preservation field. Building nature-inspired model behaviors is a good approach and opens the door to future tests with other AI-based methods
dc.description.sponsorship
This research was funded by the PRESERVA 2019 PROD 00024 and VoteVote DEMOC00001 of the AGAUR
dc.format.mimetype
application/pdf
dc.language.iso
eng
dc.publisher
MDPI (Multidisciplinary Digital Publishing Institute)
dc.relation.isformatof
Reproducció digital del document publicat a: https://doi.org/10.3390/math9182279
dc.relation.ispartof
Mathematics, 2021, vol. 9, núm. 18, p. 2279
dc.relation.ispartofseries
Articles publicats (D-EEEiA)
dc.rights
Attribution 4.0 International
dc.rights.uri
dc.subject
dc.title
Analysis of Nature-Inspired Algorithms for Long-Term Digital Preservation
dc.type
info:eu-repo/semantics/article
dc.rights.accessRights
info:eu-repo/semantics/openAccess
dc.type.version
info:eu-repo/semantics/publishedVersion
dc.identifier.doi
dc.type.peerreviewed
peer-reviewed
dc.identifier.eissn
2227-7390