Probabilistic Model of Transition between Categories of Glucose Profiles in Patients with Type 1 Diabetes Using a Compositional Data Analysis Approach
dc.contributor.author
dc.date.accessioned
2021-05-31T07:40:21Z
dc.date.available
2021-05-31T07:40:21Z
dc.date.issued
2021-05-21
dc.identifier.uri
dc.description.abstract
The time spent in glucose ranges is a common metric in type 1 diabetes (T1D). As the time in one day is finite and limited, Compositional Data (CoDa) analysis is appropriate to deal with times spent in different glucose ranges in one day. This work proposes a CoDa approach applied to glucose profiles obtained from six T1D patients using continuous glucose monitor (CGM). Glucose profiles of 24-h and 6-h duration were categorized according to the relative interpretation of time spent in different glucose ranges, with the objective of presenting a probabilistic model of prediction of category of the next 6-h period based on the category of the previous 24-h period. A discriminant model for determining the category of the 24-h periods was obtained, achieving an average above 94% of correct classification. A probabilistic model of transition between the category of the past 24-h of glucose to the category of the future 6-h period was obtained. Results show that the approach based on CoDa is suitable for the categorization of glucose profiles giving rise to a new analysis tool. This tool could be very helpful for patients, to anticipate the occurrence of potential adverse events or undesirable variability and for physicians to assess patients’ outcomes and then tailor their therapies
dc.description.sponsorship
This project has been partially supported by the Spanish Government, Ministerio de
Economía y Competitividad (MINECO) (Grants DPI2016-78831-C2-1-R, DPI2016-78831-C2-2-R, RTI2018-095518-B-C21), Agencia Estatal de Investigación (PID2019-107722RB-C21/ AEI/10.13039/501100011033), the National Council of Technological and Scientific Development, CNPq Brazil through Grants 202050/2015-7, 207688/2014-1 and EU through FEDER funds
dc.format.mimetype
application/pdf
dc.language.iso
eng
dc.publisher
MDPI (Multidisciplinary Digital Publishing Institute)
dc.relation
DPI2016-78831-C2-2-R
RTI2018-095518-B-C21
PID2019-107722RB-C21
dc.relation.isformatof
Reproducció digital del document publicat a: https://doi.org/10.3390/s21113593
dc.relation.ispartof
Sensors, 2021, vol. 21, núm. 11, p. 3593
dc.relation.ispartofseries
Articles publicats (D-IMA)
dc.rights
Attribution 4.0 International
dc.rights.uri
dc.subject
dc.title
Probabilistic Model of Transition between Categories of Glucose Profiles in Patients with Type 1 Diabetes Using a Compositional Data Analysis Approach
dc.type
info:eu-repo/semantics/article
dc.rights.accessRights
info:eu-repo/semantics/openAccess
dc.relation.projectID
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/RTI2018-095518-B-C21/ES/METODOS DEL ANALISIS COMPOSICIONAL DE DATOS/
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PID2019-107722RB-C21/ES/SOLUCIONES A MEDIDA DEL PACIENTE PARA EL CONTROL DE GLUCOSA EN SANGRE EN DIABETES TIPO 1/
info:eu-repo/grantAgreement/MINECO/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/DPI2016-78831-C2-2-R/ES/Soluciones para la Mejora de la Eficiencia y Seguridad del Páncreas Artificial mediante Arquitecturas de Control Multivariable Tolerantes a Fallos/
dc.type.version
info:eu-repo/semantics/publishedVersion
dc.identifier.doi
dc.contributor.funder
dc.type.peerreviewed
peer-reviewed
dc.relation.FundingProgramme
dc.relation.ProjectAcronym
dc.identifier.eissn
1424-8220