Machine Learning Techniques for Hypoglycemia Prediction: Trends and Challenges

Background: the use of machine learning techniques for the purpose of anticipating hypoglycemia has increased considerably in the past few years. Hypoglycemia is the drop in blood glucose below critical levels in diabetic patients. This may cause loss of cognitive ability, seizures, and in extreme cases, death. In almost half of all the severe cases, hypoglycemia arrives unannounced and is essentially asymptomatic. The inability of a diabetic patient to anticipate and intervene the occurrence of a hypoglycemic event often results in crisis. Hence, the prediction of hypoglycemia is a vital step in improving the life quality of a diabetic patient. The objective of this paper is to review work performed in the domain of hypoglycemia prediction by using machine learning and also to explore the latest trends and challenges that the researchers face in this area; (2) Methods: literature obtained from PubMed and Google Scholar was reviewed. Manuscripts from the last five years were searched for this purpose. A total of 903 papers were initially selected of which 57 papers were eventually shortlisted for detailed review; (3) Results: a thorough dissection of the shortlisted manuscripts provided an interesting split between the works based on two categories: hypoglycemia prediction and hypoglycemia detection. The entire review was carried out keeping this categorical distinction in perspective while providing a thorough overview of the machine learning approaches used to anticipate hypoglycemia, the type of training data, and the prediction horizon ​
This document is licensed under a Creative Commons:Attribution (by) Creative Commons by4.0