NWChem: Past, present, and future

Edoardo, Aprà
Bylaska, Eric
Jong, Wibe de
Govind, Niranjan
Kowalski, Karol
Straatsma, T.P.
Valiev, Marat
Dam, H. J. J. van
Alexeev, Yuri
Anchell, J.
Anisimov, V.
Aquino, F.W.
Atta-Fynn, R.
Autschbach, Jochen
Bauman, Nicholas
Becca, J.C.
Bernholdt, David E.
Bhaskaran-Nair, K.
Bogatko, S.
Borowski, P.
Boschen, J.
Brabec, J.
Bruner, A.
Cauët, E.
Chen, Yueh‐Nan
Chuev, Gennady N.
Cramer, Christopher J.
Daily, John W.
Deegan, M.J.O.
Dunning, Thom H.
Dupuis, Michel
Dyall, Kenneth G.
Fann, George I.
Fischer, Sean A.
Fonari, A.
Früchtl, H.
Gagliardi, Laura
Garza, Jorge
Gawande, Neha
Ghosh, Soumen
Glaesemann, Kurt R.
Götz, Andreas W.
Hammond, Jeff
Helms, Volkhard
Hermes, Eric D.
Hirao, Kimihiko
Hirata, So
Jacquelyn, M.
Jensen, Lasse
Johnson, Benny
Jónsson, Hannes
Kendall, Roger A.
Klemm, Michael
Kobayashi, Rika
Konkov, V.
Krishnamoorthy, S.
Krishnan, M.
Lin, Z.
Lins, R.D.
Littlefield, R.J.
Logsdail, A.J.
Lopata, Kenneth
Ma, W.
Marenich, A.V.
Martin del Campo, Jorge
Mejia-Rodriguez, Daniel
Moore, J.E.
Mullin, J.M.
Nakajima, Takahito
Nascimento, D.R.
Nichols, J.A.
Nichols, P.J.
Nieplocha, J.
Otero-de-la-Roza, A.
Palmer, B.
Panyala, Ajay
Pirojsirikul, Teerapong
Peng, Bo
Peverati, Roberto
Pittner, J.
Pollack, L.
Richard, Ryan M.
Sadayappan, P.
Schatz, George C.
Shelton, W.A.
Silverstein, D.W.
Smith, D.M.A.
Soares, Thereza A.
Song, Duo
Taylor, H.L.
Thomas, G.S.
Tipparaju, V.
Truhlar, Donald G.
Tsemekhman, K.
Voorhis, T. Van
Vázquez-Mayagoitia, A.
Verma, Prakash
Villa, O.
Vishnu, A.
Vogiatzis, K.D.
Wang, Dunyou
Weare, J.H.
Williamson, Mark J.
Windus, T.L.
Woliński, K.
Wong, A.T.
Wu, Qin
Yang, Chao
Yu, Qingquan
Zacharias, Michael
Zhang, Zhiyong
Zhao, Yan
Harrison, R.J.
Text Complet
Compartir
Specialized computational chemistry packages have permanently reshaped the landscape of chemical and materials science by providing tools to support and guide experimental efforts and for the prediction of atomistic and electronic properties. In this regard, electronic structure packages have played a special role by using first-principle-driven methodologies to model complex chemical and materials processes. Over the past few decades, the rapid development of computing technologies and the tremendous increase in computational power have offered a unique chance to study complex transformations using sophisticated and predictive many-body techniques that describe correlated behavior of electrons in molecular and condensed phase systems at different levels of theory. In enabling these simulations, novel parallel algorithms have been able to take advantage of computational resources to address the polynomial scaling of electronic structure methods. In this paper, we briefly review the NWChem computational chemistry suite, including its history, design principles, parallel tools, current capabilities, outreach, and outlook ​