Effect of alkali metal cations on length and strength of hydrogen bonds in DNA base pairs
dc.contributor.author
dc.date.accessioned
2020-11-19T11:28:23Z
dc.date.available
2022-10-28T05:46:31Z
dc.date.issued
2020-09-15
dc.identifier.issn
1439-4235
dc.identifier.uri
dc.description.abstract
For many years non-covalently bonded complexes of nucleobases have attracted considerable interest. However, there is a lack of information about the nature of hydrogen bonding between nucleobases when the bonding is affected by metal coordination to one of the nucleobases, and how the individual hydrogen bonds and aromaticity of nucleobases respond to the presence of the metal cation. Here we report a DFT computational study of nucleobase pairs interacting with alkali metal cations. The metal cations contribute to the stabilization of the base pairs to varying degrees depending on their position. The energy decomposition analysis revealed that the nature of bonding between nucleobases does not change much upon metal coordination. The effect of the cations on individual hydrogen bonds were described by changes in VDD charges on frontier atoms, H bond length, bond energy from NBO analysis, and delocalization index from QTAIM calculations. The aromaticity changes were determined by HOMA index
dc.description.sponsorship
M. Solà and O.A.S. are grateful to the Ministerio de Economía y Competitividad (MINECO)
of Spain (project CTQ2017-85341-P and Juan de la Cierva formación contract FJCI‐2017‐
32757 to O.A.S.) and the Generalitat de Catalunya (project 2017SGR39). HS and TMK thank
the National Science Centre of Poland for supporting this work under the grant no. UMO2016/23/B/ST4/00082. M. Swart acknowledges MICINN/MINECO (projects CTQ2014 59212
P, CTQ2015-70851-ERC, CTQ2017-87392-P), GenCat (2014SGR1202, 2017SGR1434 and
XRQTC network) and European Fund for Regional Development (FEDER, UNGI104E801).
C.F.G. thanks the Netherlands Organization for Scientific Research (NWO) for financial
support
dc.format.extent
15 p.
dc.format.mimetype
application/pdf
dc.language.iso
eng
dc.publisher
Wiley-VCH Verlag
dc.relation
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/CTQ2017-85341-P/ES/AVANCES EN LA REACTIVIDAD DE FULLERENOS Y NANOTUBOS: ESTUDIOS TEORICO-EXPERIMENTALES DE CICLACIONES CATALIZADAS POR METALES DE TRANSICION/
info:eu-repo/grantAgreement/MINECO//CTQ2014-59212-P/ES/SPIN STATE AND ENZYMATIC CATALYSIS BASED ON BOTTOM-UP COMPUTATIONAL DESIGN/
info:eu-repo/grantAgreement/MINECO//CTQ2015-70851-ERC/ES/SPIN STATE CATALYSIS THROUGH DENSITY-CONSISTENT MOLECULAR MODELLING/
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/CTQ2017-87392-P/ES/CHARACTERIZATION AND PREDICTION OF SHORT-LIVED TRANSITION-METAL SPECIES/
dc.relation.isformatof
Versió postprint del document publicat a: https://doi.org/10.1002/cphc.202000434
dc.relation.ispartof
© ChemPhysChem, 2020, vol. 21, núm. 18, p. 2112-2126
dc.relation.ispartofseries
Articles publicats (D-Q)
dc.rights
Tots els drets reservats
dc.source
Stasyuk, Olga A. Solà i Puig, Miquel Swart, Marcel Fonseca Guerra, Célia Krygowski, Tadeusz M. Szatylowicz, Halina 2020 Effect of alkali metal cations on length and strength of hydrogen bonds in DNA base pairs ChemPhysChem 21 18 2112 2126
dc.subject
dc.title
Effect of alkali metal cations on length and strength of hydrogen bonds in DNA base pairs
dc.type
info:eu-repo/semantics/article
dc.rights.accessRights
info:eu-repo/semantics/openAccess
dc.embargo.terms
2021-09-15T00:00:00Z
dc.date.embargoEndDate
info:eu-repo/date/embargoEnd/2021-09-15
dc.type.version
info:eu-repo/semantics/acceptedVersion
dc.identifier.doi
dc.identifier.idgrec
032144
dc.contributor.funder
dc.type.peerreviewed
peer-reviewed
dc.relation.FundingProgramme
dc.relation.ProjectAcronym
dc.identifier.eissn
1439-7641