Comparison of Principal Component Analysis Techniques for PMU Data Event Detection
dc.contributor.author
dc.date.accessioned
2020-10-02T09:09:13Z
dc.date.available
2020-10-02T09:09:13Z
dc.date.issued
2020-08
dc.identifier.uri
dc.description
Comunicació de congrés presentada a: 2020 IEEE Power and Energy Society General Meeting, Montreal, QC, Canada, 2020, 3-6 August. https://pes-gm.org/2020/
dc.description.abstract
Principal component analysis (PCA) is a dimensionality
reduction technique often applied to process and detect
events in large amounts of data collected by phasor measurement
units (PMU) at transmission and distribution level. This article
considers five different approaches to select an appropriate
number of principal components, builds the statistical model
of the PMU data online over a sliding window of 10 seconds
and 1 minute, and evaluates the computation times and the
accuracy of correct event detections with use of two statistical
tests in a 1−hour data file from the UT-Austin Independent
Texas Synchrophasor Network with phasor quantities collected
at different PMU substations
dc.description.sponsorship
This research was supported by the European Union’s
Horizon 2020 research and innovation programme, call LCE-
01-2016-2017, under the auspices of the project “Renewable
penetration levered by Efficient Low Voltage Distribution
grids”, grant agreement number 773715, and University of
Girona scholarship.
dc.format.mimetype
application/pdf
dc.language.iso
eng
dc.publisher
IEEE
dc.relation.isformatof
Versió postprint del document publicat a: 10.1109/PESGM41954.2020.9281512
dc.relation.ispartof
© 2020 IEEE Power & Energy Society General Meeting (PESGM), Montreal, QC, Canada, 2020, p. 1-5
dc.relation.ispartofseries
Contribucions a Congressos (D-EEEiA)
dc.rights
Tots els drets reservats
dc.subject
dc.title
Comparison of Principal Component Analysis Techniques for PMU Data Event Detection
dc.type
info:eu-repo/semantics/conferenceObject
dc.rights.accessRights
info:eu-repo/semantics/openAccess
dc.date.embargoEndDate
info:eu-repo/date/embargoEnd/2021-02-06
dc.relation.projectID
info:eu-repo/grantAgreement/EC/H2020/773715/EU/Renewable penetration levered by Efficient Low Voltage Distribution grids/RESOLVD
dc.type.version
info:eu-repo/semantics/acceptedVersion
dc.identifier.doi
dc.relation.FundingProgramme
dc.relation.ProjectAcronym