Red-Light Irradiation of Horse Spermatozoa Increases Mitochondrial Activity and Motility through Changes in the Motile Sperm Subpopulation Structure
dc.contributor.author
dc.date.accessioned
2020-09-04T06:20:53Z
dc.date.available
2020-09-04T06:20:53Z
dc.date.issued
2020-08-29
dc.identifier.uri
dc.description.abstract
Previous studies in other mammalian species have shown that stimulation of semen with red-light increases sperm motility, mitochondrial activity, and fertilizing capacity. This study sought to determine whether red-light stimulation using a light emitting diode (LED) at 620–630 nm affects sperm motility and structure of motile subpopulations, sperm viability, mitochondrial activity, intracellular ATP levels, rate of O2 consumption and DNA integrity of horse spermatozoa. For this purpose, nine ejaculates were collected from nine different adult stallions. Upon collection, semen was diluted in Kenney extender, analyzed, its concentration was adjusted, and finally it was stimulated with red-light. In all cases, semen was packaged in 0.5-mL transparent straws, which were randomly divided into controls and 19 light-stimulation treatments; 6 consisted of a single exposure to red-light, and the other 13 involved irradiation with intervals of irradiation and darkness (light-dark-light). After irradiation, sperm motility was assessed using a Computerized Semen Analysis System (CASA). Flow cytometry was used to evaluate sperm viability, mitochondrial membrane potential and DNA fragmentation. Intracellular levels of ATP and O2 consumption rate were also determined. Specific red-light patterns were found to modify kinetics parameters (patterns: 4, 2-2-2, 3-3-3, 4-4-4, 5-1-5, and 5-5-5 min), the structure of motile sperm subpopulations (patterns: 2, 2-2-2, 3-3-3, and 4-1-4 min), mitochondrial membrane potential (patterns: 4, 3-3-3, 4-4-4, 5-1-5, 5-5-5, 15-5-15, and 15-15-15 min), intracellular ATP levels and the rate of O2 consumption (pattern: 4 min), without affecting sperm viability or DNA integrity. Since the increase in some kinematic parameters was concomitant with that of mitochondrial activity, intracellular ATP levels and O2 consumption rate, we suggest that the positive effect of light-irradiation on sperm motility is related to its impact upon mitochondrial activity. In conclusion, this study shows that red LED light stimulates motility and mitochondrial activity of horse sperm. Additional research is needed to address the impact of red-light irradiation on fertilizing ability and the mechanisms through which light exerts its effects
dc.description.sponsorship
This research was supported by the Ministry of Science, Innovation and Universities, Spain (Grants: RYC-2014-15581 and AGL2017-88329-R), and the Regional Government of Catalonia (2017-SGR-1229)
dc.format.mimetype
application/pdf
dc.language.iso
eng
dc.publisher
MDPI (Multidisciplinary Digital Publishing Institute)
dc.relation.isformatof
Reproducció digital del document publicat a: https://doi.org/10.3390/biology9090254
dc.relation.ispartof
Biology, 2020, vol. 9, núm. 9, p. 254
dc.relation.ispartofseries
Articles publicats (D-B)
dc.rights
Attribution 4.0 International
dc.rights.uri
dc.subject
dc.title
Red-Light Irradiation of Horse Spermatozoa Increases Mitochondrial Activity and Motility through Changes in the Motile Sperm Subpopulation Structure
dc.type
info:eu-repo/semantics/article
dc.rights.accessRights
info:eu-repo/semantics/openAccess
dc.relation.projectID
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/AGL2017-88329-R/ES/MEJORA DEL RENDIMIENTO REPRODUCTIVO DEL SEMEN REFRIGERADO Y CONGELADO/DESCONGELADO DE PORCINO Y BOVINO MEDIANTE EL USO DE LA FOTOESTIMULACION/
info:eu-repo/grantAgreement/MINECO//RYC-2014-15581/ES/RYC-2014-15581/
dc.type.version
info:eu-repo/semantics/publishedVersion
dc.identifier.doi
dc.identifier.idgrec
031844
dc.contributor.funder
dc.type.peerreviewed
peer-reviewed
dc.relation.FundingProgramme
dc.relation.ProjectAcronym
dc.identifier.eissn
2079-7737