Partitioning of interaction-induced nonlinear optical properties of molecular complexes. II. Halogen-bonded systems

Full Text
PostPrint-Partitioning.pdf embargoed access
Request a copy
When filling the form you are requesting a copy of the article, that is deposited in the institutional repository (DUGiDocs), at the autor or main autor of the article. It will be the same author who decides to give a copy of the document to the person who requests it, if it considers it appropriate. In any case, the UdG Library doesn’t take part in this process because it is not authorized to provide restricted articles.
Following our study on hydrogen-bonded (HB) complexes [Phys. Chem. Chem. Phys., 2018, 20, 19841], the physical nature of interaction-induced (non)linear optical properties of another important class of molecular complexes, namely halogen-bonded (XB) systems, was analyzed in this study. The excess electronic and nuclear relaxation (hyper)polarizabilities of nine representative XB complexes covering a wide range of halogen-bond strengths were computed. The partitioning of the excess properties into individual interaction-energy components (electrostatic, exchange, induction, dispersion) was performed by using the variational-perturbational energy decomposition scheme at the MP2/aug-cc-pVTZ level of theory and further supported by calculations with the SCS-MP2 method. In the case of the electronic interaction-induced properties, the physical composition of Δαel and Δγel was found to be very similar for the two types of bonding, despite the different nature of the binding. For Δβel, the XB complexes exhibit a more systematic interplay of interaction-energy contributions compared to the HB systems studied in the previous work. Our analysis revealed that the patterns of interaction-energy contributions to the interaction-induced nuclear-relaxation contributions to the linear polarizability and the first hyperpolarizability are very similar. For both properties the exchange repulsion term is canceled out by the electrostatic and delocalization terms. The physical composition of these contributions is analogous to those observed for the HB complexes ​
​Tots els drets reservats