Optimal scalar products in the Moore-Gibson-Thompson equation
Text Complet
Compartir
We study the third order in time linear dissipative wave equation known as the Moore-Gibson-Thompson equation, that appears as the lineariza-tion of a the Jordan-Moore-Gibson-Thompson equation, an important model in nonlinear acoustics. The same equation also arises in viscoelasticity theory, as a model which is considered more realistic than the usual Kelvin-Voigt one for the linear deformations of a viscoelastic solid. In this context, it is known as the Standard Linear Viscoelastic model. We complete the description in [13] of the spectrum of the generator of the corresponding group of operators and show that, apart from some exceptional values of the parameters, this generator can be made to be a normal operator with a new scalar product, with a complete set of orthogonal eigenfunctions. Using this property we also obtain optimal exponential decay estimates for the solutions as t → ∞, whether the operator is normal or not
Tots els drets reservats