Metoprolol and metoprolol acid degradation in UV/H2O2 treated wastewaters: An integrated screening approach for the identification of hazardous transformation products

Full Text
AM-MetoprololMetoprololAcid.pdf embargoed access
Request a copy
When filling the form you are requesting a copy of the article, that is deposited in the institutional repository (DUGiDocs), at the autor or main autor of the article. It will be the same author who decides to give a copy of the document to the person who requests it, if it considers it appropriate. In any case, the UdG Library doesn’t take part in this process because it is not authorized to provide restricted articles.
Share
Advancements on analytical strategies to determine the chemicals present in treated wastewater are necessary to clearly link their occurrence with the ecotoxicity of such effluents. This study describes the development of an integrated screening approach to determine the highest number of pharmaceutical transformation products (TPs) in a single run. The identification of TPs was based on the comparison of detected features with literature sources, compound prediction tools, in-house libraries and reference standards using high resolution mass spectrometry (HRMS). This integrated approach allowed a better estimation (in silico) of the ecotoxicological contribution of the individual TPs identified. As a proof of concept, this methodology was applied for identification of the TPs generated from metoprolol and its main human metabolite (metoprolol acid) in pure water, hospital wastewater and industrial wastewater treated by UV/H2O2. Twenty-four TPs with potential ecotoxicological implications were identified and their presence was pinpointed as a function of the treated wastewater. An integrated screening approach has been developed using four different screening methodologies in the same run. Additionally, the metabolite MTPA has been considered as a target pollutant in UV/H2O2 experiments ​
This document is licensed under a Creative Commons:Attribution - Non commercial - No Derivate Works (by-nc-nd) Creative Commons by-nc-nd