Low temperature processing of solution-derived ceria deposits on flat surfaces of 3D-printed polyamide

Full Text
030015.pdf embargoed access
Request a copy
When filling the form you are requesting a copy of the article, that is deposited in the institutional repository (DUGiDocs), at the autor or main autor of the article. It will be the same author who decides to give a copy of the document to the person who requests it, if it considers it appropriate. In any case, the UdG Library doesn’t take part in this process because it is not authorized to provide restricted articles.
Doped ceria deposits have been prepared on 3D-printed polyamide-12 components starting from inkjet-compatible solutions in an attempt to functionalize the surface of the plastic part, followed by a low temperature decomposition process at 160 °C in air. The non-continuous deposits were characterized by simultaneous thermogravimetric analysis, differential scanning calorimetry and evolved gas analysis, X-ray diffraction, X-ray photoelectron spectroscopy, scanning electron microscopy with energy dispersive X-ray spectroscopy, transmission electron microscopy and electron diffraction. After thermal treatment, the deposits are still clearly visible at the surface of the polymer. However, no crystallinity of the ceria is observed, in contrast to identical low temperature processing on inert substrates such as glass where nanoparticle ceria aggregates were produced. This is tentatively explained by the chemically-reducing character of the polyamide, and in particular to CO and hydrocarbon gases released during the heating process, which would continuously induce the reduction of Ce4+ to Ce3+ at the low temperature of 160 °C, influencing the non-detection of crystalline ceria ​
​Tots els drets reservats