Trajectory Shape Analysis and Anomaly Detection Utilizing Information Theory Tools
dc.contributor.author
dc.date.accessioned
2019-03-21T07:02:26Z
dc.date.available
2019-03-21T07:02:27Z
dc.date.issued
2017-06-30
dc.identifier.uri
dc.description.abstract
In this paper, we propose to improve trajectory shape analysis by explicitly considering the speed attribute of trajectory data, and to successfully achieve anomaly detection. The shape of object motion trajectory is modeled using Kernel Density Estimation (KDE), making use of both the angle attribute of the trajectory and the speed of the moving object. An unsupervised clustering algorithm, based on the Information Bottleneck (IB) method, is employed for trajectory learning to obtain an adaptive number of trajectory clusters through maximizing the Mutual Information (MI) between the clustering result and a feature set of the trajectory data. Furthermore, we propose to effectively enhance the performance of IB by taking into account the clustering quality in each iteration of the clustering procedure. The trajectories are determined as either abnormal (infrequently observed) or normal by a measure based on Shannon entropy. Extensive tests on real-world and synthetic data show that the proposed technique behaves very well and outperforms the state-of-the-art methods
dc.description.sponsorship
This work has been funded by Natural Science Foundation of China (61471261, 61179067,
U1333110) and Spanish ministry MINECO (TIN2016-75866-C3-3-R). First author acknowledges the support from
Secretaria d’Universitats i Recerca del Departament d’Empresa i Coneixement de la Generalitat de Catalunya and
the European Social Fund
dc.format.extent
109 p.
dc.format.mimetype
application/pdf
dc.language.iso
eng
dc.publisher
MDPI (Multidisciplinary Digital Publishing Institute)
dc.relation
MINECO/PE 2016-2019/TIN2016- 75866-C3-3-R
dc.relation.isformatof
Reproducció digital del document publicat a: https://doi.org/10.3390/e19070323
dc.relation.ispartof
Entropy, 2017, vol. 19, núm. 7, p. 323-431
dc.relation.ispartofseries
Articles publicats (D-IMAE)
dc.rights
Reconeixement 3.0 Espanya
dc.rights.uri
dc.source
Guo, Yuejun Xu, Qing Li, Peng Sbert, Mateu Yang, Yu 2017 Trajectory Shape Analysis and Anomaly Detection Utilizing Information Theory Tools Entropy 19 7 323 431
dc.subject
dc.title
Trajectory Shape Analysis and Anomaly Detection Utilizing Information Theory Tools
dc.type
info:eu-repo/semantics/article
dc.rights.accessRights
info:eu-repo/semantics/openAccess
dc.type.version
info:eu-repo/semantics/publishedVersion
dc.identifier.doi
dc.identifier.idgrec
029510
dc.contributor.funder
dc.type.peerreviewed
peer-reviewed
dc.identifier.eissn
1099-4300