Impact of fullerenes in the bioaccumulation and biotransformation of venlafaxine, diuron and triclosan in river biofilms

Full Text
AM-ImpactFullerenes.pdf embargoed access
Request a copy
When filling the form you are requesting a copy of the article, that is deposited in the institutional repository (DUGiDocs), at the autor or main autor of the article. It will be the same author who decides to give a copy of the document to the person who requests it, if it considers it appropriate. In any case, the UdG Library doesn’t take part in this process because it is not authorized to provide restricted articles.
Share
A huge variety of organic microcontaminants are presently detected in freshwater ecosystems, but there is still a lack of knowledge about their interactions, either with living organisms or with other contaminants. Actually, carbon nanomaterials like fullerenes (C 60 ) can act as carriers of organic microcontaminants, but their relevance in processes like bioaccumulation and biotransformation of organic microcontaminants by organisms is unknown. In this study, mesocosm experiments were used to assess the bioaccumulation and biotransformation of three organic microcontaminants (venlafaxine, diuron and triclosan) in river biofilms, and to understand how much the concomitant presence of C 60 at environmental relevant concentrations could impact these processes. Results indicated that venlafaxine exhibited the highest bioaccumulation (13% of the initial concentration of venlafaxine in water), while biotransformation was more evident for triclosan (5% of the initial concentration of triclosan in water). Furthermore, biotransformation products such as methyl-triclosan were also present in the biofilm, with levels up to 42% of the concentration of accumulated triclosan. The presence of C 60 did not involve relevant changes in the bioaccumulation and biotransformation of microcontaminants in biofilms, which showed similar patterns. Nevertheless, the study shows that a detailed evaluation of the partition of the organic microcontaminants and their transformation products in freshwater systems are important to better understand the impact of the co-existence of others microcontaminants, like carbon nanomaterials, in their possible routes of bioaccumulation and biotransformation ​
This document is licensed under a Creative Commons:Attribution - Non commercial - No Derivate Works (by-nc-nd) Creative Commons by-nc-nd