Antimicrobial peptide KSL-W and analogues: Promising agents to control plant diseases

Full Text
029098.pdf embargoed access
Request a copy
When filling the form you are requesting a copy of the article, that is deposited in the institutional repository (DUGiDocs), at the autor or main autor of the article. It will be the same author who decides to give a copy of the document to the person who requests it, if it considers it appropriate. In any case, the UdG Library doesn’t take part in this process because it is not authorized to provide restricted articles.
Share
Recent strong restrictions on the use of pesticides has prompted the search for safer alternatives, being antimicrobial peptides promising candidates. Herein, with the aim of identifying new agents, 15 peptides reported as plant defense elicitors, promiscuous, multifunctional or antimicrobial were selected and tested against six plant pathogenic bacteria of economic importance. Within this set, KSL-W (KKVVFWVKFK-NH2) displayed high antibacterial activity against all the tested pathogens, low hemolysis and low phytotoxicity in tobacco leaves. This peptide was taken as a lead and 49 analogues were designed and synthesized, including N-terminal deletion sequences, peptides incorporating a d-amino acid and lipopeptides. The screening of these sequences revealed that a nine amino acid length was the minimum for activity. The presence of a d-amino acid significantly decreased the hemolysis and endowed KSL-W with the capacity to induce the expression of defense-related genes in tomato plants. The incorporation of an acyl chain led to sequences with high activity against Xanthomonas strains, low hemolysis and phytotoxicity. Therefore, this study demonstrates that KSL-W constitutes an excellent candidate as new agent to control plant diseases and can be considered as a lead to develop derivatives with multifunctional properties, including antimicrobial and plant defense elicitation ​
​Tots els drets reservats